Journal of Insect Conservation

, Volume 14, Issue 1, pp 77–88 | Cite as

Estimating genetic and phenotypic diversity in a northern hoverfly reveals lack of heterozygosity correlated with significant fluctuating asymmetry of wing traits

  • Vesna Milankov
  • Ljubinka Francuski
  • Jasmina Ludoški
  • Gunilla Ståhls
  • Ante Vujić
Original Paper


The genetic structure and phenotypic diversity of a population of Cheilosia naruska Haarto and Kerppola, 2007 (Diptera, Syrphidae) from Lapland, Finland, was examined through allozyme electrophoresis and wing morphometrics. The morphological identification of the species was verified molecularly using partial sequences of mitochondrial COI and the nuclear ribosomal ITS2 genes comparing with corresponding sequences of a paratype of the taxon. Based on protein electrophoresis, out of 12 analyzed allozyme loci, only one locus (Me) was found to be polymorphic. The low genetic variability was further evidenced by the absence of heterozygote genotypes. Fluctuating asymmetry was used as a measure of developmental stability. For this we used different wing traits that were estimated using both wing landmark positions and metric traits. Procrustes ANOVA and Canonical variate analysis revealed asymmetry in wing metric and wing shape and size, and within each sex considered separately. Principal component analysis revealed similar multivariate patterns of landmark covariation between within-individual variability (fluctuating asymmetry) and variation among individuals. Finally, the observed association between lack of heterozygosity and high level of asymmetry is discussed in light of conservation.


Allozyme Asymmetry Cheilosia naruska COI mtDNA ITS2 rDNA Sex dimorphism Wing geometric morphometrics Wing metric morphometrics 



This work was supported by the Ministry of Science of Serbia, Grant Number 143006B and the Provincial Secretariat for Science and Technological Development (Maintenance of biodiversity—“Hot spots” on the Balkan and Iberian Peninsula). J. L. and Lj. F. were supported by PhD fellowships from the Ministry of Science of Serbia.


  1. Badyaev AV, Foresman KR (2000) Extreme environmental change and evolution: stress-induced morphological variation is strongly concordant with patterns of evolutionary divergence in shrew mandibles. P Roy Soc B-Biol Sci 267:371–377CrossRefGoogle Scholar
  2. Beebe NW, Saul A (1995) Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction- restriction fragment length polymorphism analysis. Am J Trop Med Hyg 53:478–481PubMedGoogle Scholar
  3. Birdsall K, Zimmerman E, Teeter K, Gibson G (2000) Genetic variation for the positioning of wing veins in Drosophila melanogaster. Evol Dev 2(1):16–24. doi: 10.1046/j.1525-142x.2000.00034.x CrossRefPubMedGoogle Scholar
  4. Clarke GM (1995) Relationships between developmental stability and fitness: application for conservation biology. Conserv Biol 9:18–24. doi: 10.1046/j.1523-1739.1995.09010018.x CrossRefGoogle Scholar
  5. Clary D, Wolstenholme D (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271. doi: 10.1007/BF02099755 CrossRefPubMedGoogle Scholar
  6. Claussen C, Ståhls G (2007) A new species of Cheilosia Meigen from Thessaly/Greece, and its phylogenetic position (Diptera, Syrphidae). Volucella 8:45–61Google Scholar
  7. Debat V, Bégin M, Legout H, David JR (2003) Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evol Int J Org Evol 57(12):2773–2784Google Scholar
  8. Debat V, Milton CC, Rutherford S, Klingenberg CP, Hoffmann AA (2006) HSP90 and the quantitative variation of wing shape in Drosophila melanogaster. Evol Int J Org Evol 60(12):2529–2538Google Scholar
  9. Francuski Lj, Ludoški J, Vujić A, Milankov V (2009) Wing geometric morphometric inferences on species delimitation and intraspecific divergent units in the Merodon ruficornis group (Diptera, Syrphidae) from the Balkan Peninsula. Zool Sci 26:301–308CrossRefPubMedGoogle Scholar
  10. Frankham R (2003) Genetics and conservation biology. C R Biol 326:S22–S29. doi: 10.1016/S1631-0691(03)00023-4 CrossRefPubMedGoogle Scholar
  11. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi: 10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  13. Gilchrist AS, Azevedo RBR, Partridge L, O’Higgins P (2000) Adaptation and constraint in the evolution of Drosophila melanogaster wing shape. Evol Dev 2(2):114–124. doi: 10.1046/j.1525-142x.2000.00041.x CrossRefPubMedGoogle Scholar
  14. Graham JH, Freeman DC, Emlen JM (1993) Antisymmetry, directional symmetry, and dynamic morphogenesis. Genetica 89:121–137. doi: 10.1007/BF02424509 CrossRefGoogle Scholar
  15. Grueber CE, Wallis GP, Jamieson IG (2008) Heterozygosity-fitness correlations and their relevance to studies on inbreeding depression in threatened species. Mol Ecol 17:3978–3984. doi: 10.1111/j.1365-294X.2008.03910.x CrossRefPubMedGoogle Scholar
  16. Haarto A, Kerppola S (2007) Finnish hoverflies and some species in adjacent countries. Otavan Kirjapaino Oy, KeuruuGoogle Scholar
  17. Haarto A, Kerppola S, Ståhls G (2007) Description of Cheilosia naruska Haarto & Kerppola spec. nov. from northern Europe (Diptera, Syrphidae). Volucella 8:63–72Google Scholar
  18. Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474. doi: 10.1046/j.1365-294X.2002.01644.x CrossRefPubMedGoogle Scholar
  19. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913. doi: 10.1038/35016000 CrossRefPubMedGoogle Scholar
  20. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195. doi: 10.1098/rstb.2003.1388 CrossRefPubMedGoogle Scholar
  21. Hoffmann AA, Woods RE, Collins E, Wallin K, White A, McKenzie JA (2005) Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Aust J Entomol 44:233–243. doi: 10.1111/j.1440-6055.2005.00469.x CrossRefGoogle Scholar
  22. Jenkins NL, Hoffmann AA (2000) Variation in morphological traits and trait asymmetry in field Drosophila serrata from marginal populations. J Evol Biol 13:113–130. doi: 10.1046/j.1420-9101.2000.00149.x CrossRefGoogle Scholar
  23. Kark S, Lens L, Van Dongen S, Schmidt E (2004) Asymmetry patterns across the distribution range: does the species matter? Biol J Linn Soc Lond 81:313–324. doi: 10.1111/j.1095-8312.2004.00296.x CrossRefGoogle Scholar
  24. Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analysing patterns of fluctuating asymmetry with Procrustes methods. Evol Int J Org Evol 52(5):1363–1375. doi: 10.2307/2411306 Google Scholar
  25. Klingenberg CP, Zaklan SD (2000) Morphological integration between developmental compartments in the Drosophila wing. Evol Int J Org Evol 54(4):1273–1285Google Scholar
  26. Leamy L (1984) Morphometric studies in inbred and hybrid house mice. V. directional and fluctuating asymmetry. Am Nat 123:579–593. doi: 10.1086/284225 CrossRefGoogle Scholar
  27. Leamy LJ, Klingenberg CP (2005) The genetics and evolution of fluctuating asymmetry. Annu Rev Ecol Evol Syst 36:1–21. doi: 10.1146/annurev.ecolsys.36.102003.152640 CrossRefGoogle Scholar
  28. Lens L, Van Dongen S (2002) Fluctuating asymmetry as a bio-indicator in isolated populations of the Taita thrush: a Bayesian perspective. J Biogeogr 29:809–819. doi: 10.1046/j.1365-2699.2002.00725.x CrossRefGoogle Scholar
  29. Ludoški J, Milankov V, Vujić A (2002) Genetic diversity and differentiation between montane populations of Cheilosia urbana (Diptera: Syrphidae). Int J Dipterol Res 13(2):135–141Google Scholar
  30. Ludoški J, Milankov V, Vujić A (2004) Low genetic differentiation among conspecific populations of Melanogaster nuda (Diptera, Syrphidae). Int J Dipterol Res 15(3):228–235Google Scholar
  31. Ludoški J, Francuski L, Vujić A, Milankov V (2008) The Cheilosia canicularis group (Diptera: Syrphidae): species delimitation and evolutionary relationships based on wing geometric morphometrics. Zootaxa 1825:40–50Google Scholar
  32. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc., SunderlandGoogle Scholar
  33. Milankov V, Vujić A, Ludoški J (2001) Genetic divergence among cryptic taxa of Merodon avidus (Rossi, 1790) (Diptera: Syrphidae). Int J Dipterol Res 12:15–24Google Scholar
  34. Milankov V, Stamenković J, Ludoški J, Ståhls G, Vujić A (2005) Diagnostic molecular markers and the genetic relationships among three species of the Cheilosia canicularis group (Diptera: Syrphidae). Eur J Entomol 102:125–131Google Scholar
  35. Milankov V, Ståhls G, Vujić A (2008a) Genetic characterization of the Balkan endemic species, Merodon desuturinus (Diptera: Syrphidae). Eur J Entomol 105(2):197–204Google Scholar
  36. Milankov V, Ståhls G, Vujić A (2008b) Molecular diversity of populations of the Merodon ruficornis group (Diptera, Syrphidae) on the Balkan Peninsula. J Zoolog Syst Evol Res 46(2):143–152. doi: 10.1111/j.1439-0469.2007.00448.x CrossRefGoogle Scholar
  37. Milankov V, Ståhls S, Stamenković J, Vujić A (2008c) Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula. Conserv Genet 9(5):1125–1137. doi: 10.1007/s10592-007-9426-8 CrossRefGoogle Scholar
  38. Milankov V, Ludoški J, Ståhls G, Stamenković J, Vujić A (2009) High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zool J Linn Soc Lond 155(4):819–833. doi: 10.1111/j.1096-3642.2008.00462.x CrossRefGoogle Scholar
  39. Miller HC, Lambert DM, Millar CD, Robertson BC, Minot EO (2003) Minisatellite DNA profiling detects lineages and parentage in the endangered Kakapo (Strigops habroptilus) despite low microsatellite DNA variation. Conserv Genet 4:265–274. doi: 10.1023/A:1024037601708 CrossRefGoogle Scholar
  40. Mitton J (1997a) Environmental variability and enzyme polymorphism. In: Selection in natural populations. Oxford University Press, pp 29–38Google Scholar
  41. Mitton J (1997b) Patterns of variation among loci. In: Selection in natural populations. Oxford University Press, pp 58–72Google Scholar
  42. Møller AP (1993) Developmental stability, sexual selection and speciation. J Evol Biol 6:493–509. doi: 10.1046/j.1420-9101.1993.6040493.x CrossRefGoogle Scholar
  43. Moraes EM, Spressola VL, Prado PRR, Costa LF, Sene FM (2004) Divergence in wing morphology among sibling species of Drosophila buzzatii cluster. J Zoolog Syst Evol Res 42:154–158. doi: 10.1111/j.1439-0469.2004.00256.x CrossRefGoogle Scholar
  44. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254. doi: 10.1080/10635150252899752 CrossRefPubMedGoogle Scholar
  45. Munstermann LE (1979) Isozymes of Aedes aegypti: phenotypes, linkage, and use of genetic analysis of sympatric population in East Africa. Ph.D. thesis, University of Notre Dame, Notre DameGoogle Scholar
  46. Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Markow TA (ed) Developmental Instability: its origins and evolutionary implications. Kluwer, Dordrecht, pp 335–364Google Scholar
  47. Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurements, analysis, patterns. Annu Rev Ecol Evol Syst 17:391–421CrossRefGoogle Scholar
  48. Palmer AR, Strobeck C (1992) Fluctuating asymmetry as a measure of developmental stability: implications of non-normal distributions and power statistical tests. Acta Zool Fenn 191:57–72Google Scholar
  49. Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J (1988) Practical isozyme genetics. Ellis Horwood Limited, ChichesterGoogle Scholar
  50. Pélabon C, Hansen TF, Carter AJR, Houle D (2006) Response of fluctuating and directional asymmetry to selection on wing shape in Drosophila melanogaster. J Evol Biol 19:764–776. doi: 10.1111/j.1420-9101.2005.01054.x CrossRefPubMedGoogle Scholar
  51. Rohlf FJ (2004) tpsDig–Thin Plate Spline Digitizer, version 1.40. Department of Ecology and Evolution, State University of New York at Stony Brook, New YorkGoogle Scholar
  52. Rohlf FJ (2005) tpsRegr–Thin Plate Spline Shape Regression, version 1.31. Department of Ecology and Evolution, State University of New York at Stony Brook, New YorkGoogle Scholar
  53. Rohlf FJ (2006) tpsRelw–Thin Plate Spline Relative Warp, version 1.44. Department of Ecology and Evolution, State University of New York at Stony Brook, New YorkGoogle Scholar
  54. Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39(1):40–59. doi: 10.2307/2992207 CrossRefGoogle Scholar
  55. Rohlf FJ, Loy A, Corti M (1996) Morphometric analysis of old world talpidae (Mammalia, Insectivora) using partial-warp scores. Syst Biol 45(3):344–362. doi: 10.2307/2413569 Google Scholar
  56. Santos M (2001) Fluctuating asymmetry is nongenetically related to mating success in Drosophila buzzatii. Evol Int J Org Evol 55(11):2248–2256Google Scholar
  57. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  58. Smith DR, Crespi BJ, Bookstein FL (1997) Fluctuating asymmetry in the honeybee, Apis mellifera: effect of ploidy and hybridization. J Evol Biol 10:551–574. doi: 10.1007/s000360050041 CrossRefGoogle Scholar
  59. Speight MCD (2007) Species accounts of European Syrphidae (Diptera). In: Speight MCD, Castella E, Sarthou JP, Monteil C (eds) Syrph the Net, the database of European Syrphidae, vol 55. Syrph the Net publications, DublinGoogle Scholar
  60. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101(42):15261–15264. doi: 10.1073/pnas.0403809101 CrossRefPubMedGoogle Scholar
  61. Ståhls G, Vujić A, Milankov V (2008) Cheilosia vernalis-complex: molecular and morphological variability (Diptera, Syrphidae). Ann Zool Fenn 45:149–159Google Scholar
  62. Swofford DL, Selander RB (1989) BIOSYS-2: a computer program for the analysis of allelic variation in genetics. University of Illinois at Urbana-Champaign, UrbanaGoogle Scholar
  63. Trotta V, Calboli FCF, Garoia F, Grifoni D, Cavicchi S (2005) Fluctuating asymmetry as a measure of ecological stress in Drosophila melanogaster (Diptera: Drosophilidae). Eur J Entomol 102:195–200Google Scholar
  64. Van Dongen S (2006) Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J Evol Biol 19:1727–1743. doi: 10.1111/j.1420-9101.2006.01175.x CrossRefPubMedGoogle Scholar
  65. Van Valen L (1962) A study of fluctuating asymmetry. Evol Int J Org Evol 16:125–142. doi: 10.2307/2406192 Google Scholar
  66. Villemant C, Simbolotti G, Kenis M (2007) Discrimination of Eubazus (Hymenoptera, Braconidae) sibling species using geometric morphometrics analysis of wing venation. Syst Entomol 32:625–634. doi: 10.1111/j.1365-3113.2007.00389.x CrossRefGoogle Scholar
  67. Vøllestad LA, Hindar K, Moller AP (1999) A meta-analysis of fluctuating asymmetry in relation to heterozygosity. Heredity 83:206–218. doi: 10.1046/j.1365-2540.1999.00555.x CrossRefPubMedGoogle Scholar
  68. Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, Selegue J, Carroll S (1999) Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol 9:109–115. doi: 10.1016/S0960-9822(99)80064-5 CrossRefPubMedGoogle Scholar
  69. Willmore KE, Young NM, Richtsmeier JT (2007) Phenotypic variability: its components, measurement and underlying developmental processes. Evol Biol 34:99–120. doi: 10.1007/s11692-007-9008-1 CrossRefGoogle Scholar
  70. Woods RE, Sgró CM, Hercus MJ, Hoffmann AA (2002) Fluctuating asymmetry, fecundity and developmental time in Drosophila: is there an association under optimal and stress conditions? J Evol Biol 15:146–157. doi: 10.1046/j.1420-9101.2002.00359.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vesna Milankov
    • 1
  • Ljubinka Francuski
    • 1
  • Jasmina Ludoški
    • 1
  • Gunilla Ståhls
    • 2
  • Ante Vujić
    • 1
  1. 1.Faculty of Sciences, Department of Biology and EcologyUniversity of Novi SadNovi SadSerbia
  2. 2.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations