Journal of Insect Conservation

, Volume 12, Issue 6, pp 591–601 | Cite as

Population ecology of the rare carabid beetle Carabus variolosus (Coleoptera: Carabidae) in north-west Germany

  • Andrea Matern
  • Claudia Drees
  • Hartmut Meyer
  • Thorsten Assmann
Original Paper


The declining European ground beetle Carabus variolosus, an indicator of undisturbed woodland brooks and swamps, is listed in the EU Species and Habitats Directive. Little is known about this flightless and endangered beetle, apart from its distribution range and habitat stenotopy. We present the results of a 2-year mark-release-recapture study on two neighbouring populations in Germany, which investigated basic parameters of population ecology that may be influential in the persistence of the beetle. Extremely small population sizes were the key findings. Since population densities corresponded to those of typical Carabus species, the size of the habitats was most probably the limiting factor. The risk of heavy losses during offspring development and hibernation may be alleviated by the considerable proportion of C. variolosus reproducing in more than 1 year. The fact that we did not recapture any marked specimens from the neighbouring population suggests a very limited dispersal power. The results imply a high vulnerability of the species, provide basic methodological information for an implementation of the EC Directive and for further research, and highlight the necessity to enlarge populated habitats.


Ancient woodland Extinction risk Floodplain forest Natura 2000 Population size 



We thank T. Huk and two anonymous reviewers for helpful comments on the manuscript. We also thank the ABU Soest, the Arnsberg Forestry Office, the Westphalian Museum of Natural History, especially H. Terlutter, and K. Hannig for supporting this work. The authorities are thanked for issuing permits. This research was supported by a grant from the German Federal Environmental Foundation (DBU) to A. M.


  1. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Oxford, UKGoogle Scholar
  2. Arndt E (1989) Beiträge zur Insektenfauna der DDR: Gattung Carabus Linné (Coleoptera, Carabidae). Beitr Entomol Berlin 39:63–103Google Scholar
  3. Assmann T (1999) The ground beetle fauna of ancient and recent woodlands in the lowlands of north-west Germany (Coleoptera, Carabidae). Biodivers Conserv 8:1499–1517CrossRefGoogle Scholar
  4. Assmann T, Günther J (2000) Relict populations in ancient woodlands: genetic differentiation, variability, and power of dispersal of Carabus glabratus (Coleoptera, Carabidae) in north-western Germany. In: Brandmayr P, Lövei G, Zetto Brandmayr T, Casale A, Vigna Taglianti A (eds) Natural history and applied ecology of carabid beetles. Pensoft, Sofia, Moscow, pp 197–206Google Scholar
  5. Baur B, Coray A, Minoretti N, Zschokke S (2005) Dispersal of the endangered flightless beetle Dorcadion fuliginator (Coleoptera: Cerambycidae) in spatially realistic landscapes. Biol Conserv 124:49–61CrossRefGoogle Scholar
  6. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284PubMedCrossRefGoogle Scholar
  7. Bossuyt B, Hermy M, Deckers J (1999) Migration of herbaceous plant species across ancient–recent forest ecotones in central Belgium. J Ecol 87:629–638CrossRefGoogle Scholar
  8. Breuning S (1926) Über Carabus variolosus Fabr. Koleopterologische Rundschau 12:19–25Google Scholar
  9. Bryant EH, McCommas S, Combs LM (1986) The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114:1191–1211PubMedGoogle Scholar
  10. Bryant EH, Meffert LM (1990) Multivariate phenotypic differentiation among bottleneck lines of the housefly. Evolution 44:660–668CrossRefGoogle Scholar
  11. Butterfield JEL (1996) Carabid life-cycle strategies and climate change: a study on an altitude transect. Ecol Ent 21:9–16CrossRefGoogle Scholar
  12. Charrette NA, Cleary DFR, Mooers AO (2006) Range-restricted, specialist Bornean butterflies are less likely to recover from enso-induced disturbance. Ecology 87:2330–2337PubMedCrossRefGoogle Scholar
  13. Den Boer PJ (1968) Spreading of risk and the stabilization of animal numbers. Acta Biotheoretica 18:165–194CrossRefGoogle Scholar
  14. Den Boer PJ, Den Boer-Daanje W (1990) On life history tactics in carabid beetles: are there only spring and autumn breeders? In: Stork NE (ed) The role of ground beetles in ecological and environmental studies. Intercept Ltd., Andover, pp 247–258Google Scholar
  15. Den Boer PJ, Van Dijk TS (1994) Carabid beetles in a changing environment. Wageningen Agric Univ Pap 94:1–30Google Scholar
  16. Desender K, Ervynck A, Tack G (1999) Beetle diversity and historical ecology of woodlands in Flanders. Belg J Zool 129:139–155Google Scholar
  17. Drees C (2003) Ausbreitung flugunfähiger Arthropoden über Habitatkorridore: Untersuchungen an einer Metapopulation von Carabus auronitens (Col., Carabidae) im Münsterland. Schüling, MünsterGoogle Scholar
  18. Du Feu C, Hounsome M, Spence I (1983) A single-session mark/recapture method of population estimation. Ringing Migr 4:211–226Google Scholar
  19. Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036CrossRefGoogle Scholar
  20. European Commission (2000) Managing Natura 2000 sites: the provisions of Article 6 of the ‘Habitats’ Directive 92/43/EEC. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  21. Fagan WF, Holmes EE (2006) Quantifying the extinction vortex. Ecol Lett 9:51–60PubMedGoogle Scholar
  22. Forel J, Leplat J (1995) Les Carabes de France. Science Nat, VenetteGoogle Scholar
  23. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. University Press, CambridgeGoogle Scholar
  24. Franklin IR (1980) Evolutionary changes in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–149Google Scholar
  25. Gerlach G, Musolf K (2000) Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv Biol 14:1066–1074CrossRefGoogle Scholar
  26. Gibb H, Hjalten J, Ball JP, Pettersson RB, Landin J, Alvini O, Danell K (2006) Wing loading and habitat selection in forest beetles: are red-listed species poorer dispersers or more habitat-specific than common congenerics? Biol Conserv 132:250–260CrossRefGoogle Scholar
  27. Gilpin ME, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, MA, pp 19–34Google Scholar
  28. Goulson D, Hanley ME, Darvill B, Ellis JS, Knight ME (2005) Causes of rarity in bumblebees. Biol Conserv 122:1–8CrossRefGoogle Scholar
  29. Gries B, Mossakowski D, Weber F (1973) Coleoptera Westfalica: Familia Carabidae Genera Cychrus, Carabus und Calosoma. Abh Landesmus Naturk Münster 35:3–80Google Scholar
  30. Grüm L (1975) Mortality patterns in carabid populations. Ekol Polska 23:649–665Google Scholar
  31. Günther J, Assmann T (2004) Fluctuations of carabid populations inhabiting an ancient woodland (Coleoptera, Carabidae). Pedobiologia 48:159–164CrossRefGoogle Scholar
  32. Günther J, Hölscher B (2004) Verbreitung, Populations- und Nahrungsökologie von Elaphrus aureus in Nordwestdeutschland (Coleoptera, Carabidae). Angew Carabidologie 6:15–27Google Scholar
  33. Harry I, Assmann T, Rietze J, Trautner J (2005) Der Hochmoorlaufkäfer Carabus menetriesi im voralpinen Moor- und Hügelland Bayerns. Angew Carabidologie Suppl 4:53–64Google Scholar
  34. Hockmann P, Menke K, Schlomberg P, Weber F (1992) Untersuchungen zum individuellen Verhalten (Orientierung und Aktivität) des Laufkäfers Carabus nemoralis im natürlichen Habitat. Abh Landesmus Naturk Münster 54:65–98Google Scholar
  35. Hurka K (1973) Fortpflanzung und Entwicklung der mitteleuropäischen Carabus- und Procerus-Arten. Studie CSAV 9:1–80Google Scholar
  36. Johnson CN (1998) Species extinction and the relationship between distribution and abundance. Nature 394:272–274CrossRefGoogle Scholar
  37. Johnson JA, Bellinger MR, Toepfer JE, Dunn P (2004) Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol Ecol 13:2617–2630PubMedCrossRefGoogle Scholar
  38. Jolly MF (1965) Explicit estimates from capture-recapture data both with death and immigration—a stochastic model. Biometrika 52:224–247Google Scholar
  39. Kim KC (1993) Biodiversity, conservation and inventory—why insects matter. Biodivers Conserv 2:191–214CrossRefGoogle Scholar
  40. Koth W (1974) Vergesellschaftungen von Carabiden (Coleoptera, Insecta) bodennasser Habitate des Arnsberger Waldes verglichen mit Hilfe der Renkonen-Zahl. Abh Landesmus Naturk Münster 36:1–43Google Scholar
  41. Lacy RC, Lindenmayer DB (1995) A simulation study of the impacts of population subdivision on the mountain brushtail possum Trichosurus caninus Ogilby (Phalangeridae: Marsupialia), in south-eastern Australia II. Loss of genetic variation within and between subpopulations. Biol Conserv 73:131–142CrossRefGoogle Scholar
  42. Larsson SG (1939) Entwicklungstypen und Entwicklungszeiten der dänischen Carabiden. Entomol Medd 20:273–562Google Scholar
  43. Le Galliard J-F, Fitze PS, Ferrière R, Clobert J (2005) Sex ratio bias, male aggression, and population collapse in lizards. PNAS 102:18231–18236PubMedCrossRefGoogle Scholar
  44. Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494CrossRefGoogle Scholar
  45. Legendre S, Clobert J, Møller AP, Sorci G (1999) Demographic stochasticity and social mating system in the process of extinction of small populations: the case of passerines introduced to New Zealand. Am Nat 153:449–463CrossRefGoogle Scholar
  46. Lohse G-A (1954) Die Laufkäfer des Niederelbegebietes und Schleswig-Holsteins. Verh Ver Naturwiss Heimatforsch Hamburg 31:1–39Google Scholar
  47. Lorenz WMT (2005) Aktueller Kenntnisstand zur Verbreitung der Laufkäfer in Deutschland—Insecta Coleoptera Carabidae s.l. Cited 6 Feb 2007
  48. Maes D, Vanreusel W, Talloen W, Van Dyck H (2004) Functional conservation units for the endangered Alcon Blue butterfly Maculinea alcon in Belgium (Lepidoptera: Lycaenidae). Biol Conserv 120:229–241CrossRefGoogle Scholar
  49. Matern A, Assmann T (2004) Nationale Verantwortlichkeit und Rote Listen—Carabus nodulosus als Fallbeispiel für die Zusammenführung und die damit verbundenen Probleme. In: Gruttke H (ed) Ermittlung der Verantwortlichkeit für die Erhaltung mitteleuropäischer Arten. Natursch u Biol Vielfalt 8:235–254Google Scholar
  50. Matern A, Drees C, Kleinwächter M, Assmann T (2007) Habitat modelling for the conservation of the rare ground beetle species Carabus variolosus (Coleoptera, Carabidae) in the riparian zones of headwaters. Biol Conserv 136:618–627CrossRefGoogle Scholar
  51. Montgomery ME, Woodworth LM, Nurthen RK, Gilligan DM, Briscoe DA, Frankham R (2000) Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions. Conserv Genet 1:33–43CrossRefGoogle Scholar
  52. Morati J, Huet M (1995) Présence de Carabus (Hygrocarabus) nodulosus Creutzer, 1799, dans le Jura français (Coleoptera, Carabidae). Bull Soc Entomol Fr 100:144Google Scholar
  53. Müller-Westermeier G, Kreis A, Dittmann E (1999) Klimaatlas der Bundesrepublik Deutschland, Teil 1. Deutscher Wetterdienst, OffenbachGoogle Scholar
  54. Murphy DD, Freas KE, Weiss SB (1990) An environment-metapopulation approach to population viability analysis for a threatened invertebrate. Conserv Biol 4:41–51CrossRefGoogle Scholar
  55. Newmark WD (1995) Extinction of mammal populations in Western North American national parks. Conserv Biol 9:512–526CrossRefGoogle Scholar
  56. Oborny B, Meszéna G, Szabó G (2005) Dynamics of populations on the verge of extinction. Oikos 109:291–296CrossRefGoogle Scholar
  57. Pavicevic D, Mesaros G (1997) Carabini of Jugoslavia and adjacent regions (Coleoptera: Carabidae). Catalogus Faunae Jugoslaviae. Encyclopaedia. Ecolibri-Bionet, BelgradGoogle Scholar
  58. Peterken GF (1993) Woodland conservation and management, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  59. Pierce S, Ceriani RM, Villa M, Cerabolini B (2006) Quantifying relative extinction risks and targeting intervention for the orchid flora of a natural park in the European prealps. Conserv Biol 20:1804–1810PubMedCrossRefGoogle Scholar
  60. Pimm SL, Jones HL, Diamond J (1988) On the risk of extinction. Am Nat 132:757–785CrossRefGoogle Scholar
  61. Pullin AS (2002) Conservation biology. Cambridge University Press, Cambridge, UKGoogle Scholar
  62. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952CrossRefGoogle Scholar
  63. Rackham O (1993) Trees and woodland in the British landscape, 2nd edn. J. M. Dent and Sons Ltd., LondonGoogle Scholar
  64. Ranius T (2000) Minimum viable metapopulation size of a beetle, Osmoderma eremita, living in tree hollows. Anim Conserv 3:37–43CrossRefGoogle Scholar
  65. Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28:593–602CrossRefGoogle Scholar
  66. Rijnsdorp AD (1980) Patterns of movement in and dispersal from a Dutch forest of Carabus problematicus (Coleoptera, Carabidae). Oecologia 45:274–281CrossRefGoogle Scholar
  67. Roderick GK (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Ann Rev Entomol 41:325–352CrossRefGoogle Scholar
  68. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  69. Samways MJ (2005) Insect diversity conservation. Cambridge University Press, Cambridge, UKGoogle Scholar
  70. Sander A-C, Purtauf T, Wolters V, Dauber J (2006) Landscape genetics of the widespread ground-beetle Carabus auratus in an agricultural region. Basic Appl Ecol 7:555–564CrossRefGoogle Scholar
  71. Schtickzelle N, Choutt J, Goffart P, Fichefet V, Baguette M (2005) Metapopulation dynamics and conservation of the marsh fritillary butterfly: population viability analysis and management options for a critically endangered species in Western Europe. Biol Conserv 126:569–581CrossRefGoogle Scholar
  72. Schwöppe M, Kreuels M, Weber F (1998) Zur Frage der historisch oder ökologisch bedingten Begrenzung des Vorkommens einer waldbewohnenden, ungeflügelten Carabidenart: Translokationsexperimente und kontrollierten Bedingungen mit Carabus auronitens im Münsterland. Abh Landesmus Naturk Münster 60:3–77Google Scholar
  73. Seber GAF (1965) A note on the multiple-recapture census. Biometrika 52:249–259PubMedGoogle Scholar
  74. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134CrossRefGoogle Scholar
  75. Sinclair EA (2001) Phylogeographic variation in the quokka, Setonix brachyurus (Marsupialia: Macropodidae): implications for conservation. Anim Conserv 4:325–333CrossRefGoogle Scholar
  76. Sota T (1987) Mortality pattern and age structure in two carabid populations with different seasonal life cycles. Res Popul Ecol 29:237–254CrossRefGoogle Scholar
  77. Southwood TRE, Henderson PA (2000) Ecological Methods, 3rd edn. Blackwell Science, OxfordGoogle Scholar
  78. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. TREE 14:401–405PubMedGoogle Scholar
  79. Sturani M (1962) Osservazioni e ricerche biologiche sul genere Carabus Linnaeus (Sensu Lato) (Coleoptera Carabidae). Mem Soc Entomol Italiana 41:85–202Google Scholar
  80. Sturani M (1963) Nuove ricerche biologiche e morfologiche sul Carabus (Hygrocarabus) variolosus Fabricius (Coleoptera Carabidae). Boll Zool Agrar Bachicoltura Serie 2:25–34Google Scholar
  81. Tanaka Y (2000) Extinction of populations by inbreeding depression under stochastic environments. Popul Ecol 42:55–62CrossRefGoogle Scholar
  82. The Council of the European Communities (2004) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora—Consolidated Text. Office for Official Publications of the European CommunitiesGoogle Scholar
  83. Tockner K, Stanford J (2002) Riverine floodplains: present state and future trend. Environ Conserv 29:308–330Google Scholar
  84. Turin H, Penev L, Casale A, Arndt E, Assmann T, Makarov KV, Mossakowski D, Szél G, Weber F (2003) Species accounts. In: Turin H, Penev L, Casale A (eds) The genus Carabus in Europe—a synthesis. Pensoft Publishers and European Invertebrate Survey, Sofia, Moscow and Leiden, pp 151–283Google Scholar
  85. Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6:535–545CrossRefGoogle Scholar
  86. Van Nouhuys S, Tay WT (2001) Causes and consequences of small population size for a specialist parasitoid wasp. Oecologia 128:126–133CrossRefGoogle Scholar
  87. Vives E (2001) Atlas fotográfico de los cerambícidos íbero-baleares. Argania editio, BarcelonaGoogle Scholar
  88. Waldron JL, Bennet SH, Welch SM, Dorcas ME, Lanham JD, Kalinowsky W (2006) Habitat specificity and home-range size as attributes of species vulnerability to extinction: a case study using sympatric rattlesnakes. Anim Conserv 9:414–420CrossRefGoogle Scholar
  89. Weber F, Heimbach U (2001) Behavioural, reproductive and developmental seasonality in Carabus auronitens and Carabus nemoralis (Col., Carabidae): a demographic comparison between two co-existing spring breeding populations and tests for intra- and interspecific competition and for synchronizing weather events. Mitt Biol Bundesanstalt f Land Forstwirtschaft 382:3–192Google Scholar
  90. Weber F, Weber I (1966) Wiederentdeckung des Laufkäfers Carabus variolosus F. im Arnsberger Wald. Natur Heimat 26:69–70Google Scholar
  91. Wright S (1978) Evolution and the genetics of populations, vol. 4. Variability within and among natural populations. University Press, ChicagoGoogle Scholar
  92. Williams P (2005) Does specialization explain rarity and decline among British bumblebees?—A response to Goulson et al. Biol Conserv 122:33–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Andrea Matern
    • 1
  • Claudia Drees
    • 1
  • Hartmut Meyer
    • 1
  • Thorsten Assmann
    • 1
  1. 1.Institute of Ecology and Environmental ChemistryLeuphana University LüneburgLüneburgGermany

Personalised recommendations