Journal of Insect Conservation

, Volume 12, Issue 5, pp 527–537 | Cite as

Morphological and molecular characterization of the Landes honey bee (Apis mellifera L.) ecotype for genetic conservation

  • James P. Strange
  • Lionel Garnery
  • Walter S. Sheppard
Original Paper


A population of honey bees (Apis mellifera mellifera L.) with an annual colony brood cycle adapted to a locally abundant floral source in the Landes region of Southwest France is the subject of genetic conservation efforts. This population is maintained by local beekeepers in an area that experiences both an annual seasonal influx of non-local colonies and the permanent culture of imported stock. However, some colonies native to the Landes do not have the adapted brood cycle and their status as ecotypic are in question. The present study used morphology, mitochondrial DNA and microsatellites to characterize the endemic population and suggests further genetic conservation strategies. These methods yielded different degrees of discrimination of native and imported colonies and provided a powerful suite of tools for local resource managers. Colonies from the Landes could be differentiated from non-local French A. m. mellifera populations using morphometric analysis, and from non-native and reference populations using mtDNA and microsatellites. Seven morphological characters were identified by discriminant analysis as informative for delineating the Landes ecotype from other A. m. mellifera populations. Mitochondrial haplotypes for the population were characterized and five microsatellite loci were found to be informative in characterizing the Landes population. Asymmetric gene flow detected with microsatellite alleles was observed to be 5.5–5.9% from imported to native stocks of honey bees while introgression of native microsatellite alleles into imported colonies was 21.6%.


Apis mellifera Ecotype conservation Microsatellites Mitochondrial DNA Morphometrics 



We thank Ludo Lemaire, Jean-Claude Ducam, Martin Irazoqui and Gilles Fert for providing experimental colonies and graciously donating time, equipment and expertise to the research. We thank the Institut für Bienenkunde in Oberursel, Germany for access to the morphological database. We thank Nicholas Dechamps for assistance in the laboratory with molecular analysis and Marina Meixner for help with data analysis. We thank François Billy and the Parc Régional Natural des Landes de Gascogne for providing staff and funding for this project. Additional funding was provided by the Centre National de la Récherche Scientifique and the Washington State Beekeepers Association.


  1. Borneck R, Merle B (1989) Essai d’une évaluation de l’incidence économique de l’abeille pollinisatrice dans l’agriculture Européenne. Apiacta 24:33–38Google Scholar
  2. Carreck N, Williams I (1998) The economic value of bees in the UK. Bee World 79:115–123Google Scholar
  3. Cornuet J-M, Albisetti J, Mallet N, Fresnaye J (1982) Étude Biométrique d’une population d’abeilles Landaise. Apidologie 13:3–13CrossRefGoogle Scholar
  4. Cornuet J-M, Garnery L, Solignac M (1991) Putative origin and function of the COI-COII intergenic region of Apis mellifera L. mitochondrial DNA. Genetics 1128:393–403Google Scholar
  5. De La Rúa P, Galián J, Serrano J, Moritz RFA (2001) Genetic structure and distinctiveness of Apis mellifera L. populations from the Canary Islands. Mol Ecol 10:1733–1742PubMedCrossRefGoogle Scholar
  6. De La Rúa P, Galián J, Serrano J, Moritz RFA, (2003) Genetic structure of Balearic honeybee populations based on microsatellite polymorphism. Genet Sel Evol 35:339–350PubMedCrossRefGoogle Scholar
  7. De La Rúa P, Serrano J, Galián J (2002) Biodiversity of Apis mellifera populations from Tenerife (Canary Islands) and hybridisation with East European races. Biodiv Conserv 11:59–67CrossRefGoogle Scholar
  8. Delaplane K, Mayer D (2000) Crop pollination by bees. CABI publishing, Wallingford UKGoogle Scholar
  9. Estoup A, Garnery L, Solignac M, Cornuet J-M (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: Hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679–695 PubMedGoogle Scholar
  10. Garnery L, Franck P, Baudry E, Vautrin D, Cornuet J-M, Solignac M (1998a) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A.m. iberica), I. Mitochondrial DNA. Genet Sel Evol 30:S31–S47CrossRefGoogle Scholar
  11. Garnery L, Franck P, Baudry E, Vautrin D, Cornuet J-M, Solignac M (1998b) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica), II. Microsatellite loci. Genet Sel Evol 30:S49–S74CrossRefGoogle Scholar
  12. Garnery L, Solignac M, Celebrano G, Cornuet J-M (1993) A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera. Experimentia 49:1016–1021CrossRefGoogle Scholar
  13. GeneMapper™ Software ver. 3.5 (2003) Applied biosystems. Foster City, CaliforniaGoogle Scholar
  14. Kauhausen-Keller D, Keller R (1994) Morphometric control of pure race breeding in the honeybee (Apis mellifera L). Apidologie 25:133–143CrossRefGoogle Scholar
  15. Louveaux J (1973) The acclimatization of bees to a heather region. Bee World 54:105–111Google Scholar
  16. Louveaux J, Albisetti M, Delangue M, Theurkauff M (1966) Les modalités de l’adaptation des abeilles (Apis mellifica L.) au milieu naturel. Annales de l’abeille 9:323–350CrossRefGoogle Scholar
  17. Meixner A, Meixner MD (2004) Bee2 morphometric software, © 1996–2004. Frankfurt, GermanyGoogle Scholar
  18. Moritz RFA (1991) The limitations of biometric control on pure race breeding in Apis mellifera. J of Apicultural Research 30:54–59Google Scholar
  19. Moritz RFA, Kraus FB, Kryger P, Crewe RM (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. J Insect Conserv DOI 10.1007/s10841-006-9054-5Google Scholar
  20. Odoux J-F, Garnery L (1995) Recherche d’abeilles de types locaux en France. Bull Techn Apicult 22:83–88Google Scholar
  21. Perrier C, Strange J, Langella O, Sheppard WS, Garnery L (2003) Diversité génétique, introgressions mitochondriales et nucléaires dans une population d’abeilles des Landes de Gascogne. Les Actes du BRG 4:79–100Google Scholar
  22. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  23. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  24. Rogers DL (2004) Genetic erosion. Native Plants 3:112–120CrossRefGoogle Scholar
  25. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer-Verlag, BerlinGoogle Scholar
  26. Ruttner F, Tassencourt L, Louveaux J (1978) Biometrical-statistical analysis of the geographic variability of Apis mellifera L. 1. Materials and Methods. Apidologie 9:363–381CrossRefGoogle Scholar
  27. Scherf BD (2000) World Watch List for domesticated animal diversity 3rd edn. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  28. Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Ann Rev Entomol 49:351–376CrossRefGoogle Scholar
  29. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: A software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  30. Sheppard WS Meixner MD (2003) Apis mellifera pomonella, a new honey bee subspecies from the Tien Shan mountains of Central Asia. Apidologie 34:367–375CrossRefGoogle Scholar
  31. Sheppard WS, Arias MC, Grech A, Meixner MD (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta. Apidologie 28:287–293CrossRefGoogle Scholar
  32. Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M Cornuet J-M (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol Ecol Notes 3:307–311CrossRefGoogle Scholar
  33. SPSS v12.1 (2003) SPSS Inc., Chicago, ILGoogle Scholar
  34. Strange JP, Garnery L, Sheppard WS (2007) Persistence of the Landes ecoptype in southwest France: confirmation of a locally adaptive annual brood cycle trait, Apidologie (in press)Google Scholar
  35. Walsh PS, Metzger DA, Higuchi R (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:507Google Scholar
  36. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • James P. Strange
    • 1
    • 2
  • Lionel Garnery
    • 3
    • 4
  • Walter S. Sheppard
    • 1
  1. 1.Department of EntomologyWashington State UniversityPullmanUSA
  2. 2.USDA-ARS Bee Biology and Systematics LaboratoryUtah State UniversityLoganUSA
  3. 3.Laboratoire Evolution, Génomes, et SpéciationCNRSGif-sur-Yvette, ParisFrance
  4. 4.Université de Versailles-St. Quentin en YvelineVersaillesFrance

Personalised recommendations