Journal of Insect Conservation

, 10:269 | Cite as

Evaluating spatial autocorrelation and depletion in pitfall-trap studies of environmental gradients

  • Susan C. Baker
  • Leon A. Barmuta


Studies of environmental gradients like edge effects commonly employ designs where samples are collected at unequal distances within transects. This approach risks confounding species patterns caused by the environmental gradient with patterns resulting from the spatial arrangement of the sampling scheme. Spatial autocorrelation and depletion (reduced catch) have the potential to influence pitfall-trap collections of invertebrates. Readily available control data from a study of edge and riparian effects on forest litter beetles was used to assess autocorrelation and depletion effects. Data from control transects distant from the treatment transects located at habitat edges and streams were screened to determine whether the study design (pitfall traps at varying distances within transects) was imposing patterns on the data attributable to differential autocorrelation or depletion. Autocorrelation in species composition and assemblage structure was not detected within the 99 m transects. The abundance and species richness of beetles were not lower where traps were in closer proximity, indicating that the transect design was not causing measurable depletion or resulting in differential trap catch. These findings indicate that spatial autocorrelation and depletion are unlikely to impair further analyses of edge and riparian effects on litter beetles.


Coleoptera Edge effects Spatial structure Species abundance pattern Transects 


  1. Baker, S.C., Richarsdon, A.M.M., Seeman, O.D., Barmuta, L.A. 2004Does clearfell, burn and sow silviculture mimic the effect of wildfire? A field study and review using litter beetlesFor. Ecol. Manage.199433448Google Scholar
  2. Bedford, S.E., Usher, M.B. 1994Distribution of arthropod species across the margins of farm woodlandsAgric. Ecosyst. Environ.48295305CrossRefGoogle Scholar
  3. Briggs J.B. 1961. A comparison of pitfall trapping and soil sampling in assessing populations of two species of ground beetles (Col.: Carabidae). Report of East Malling Research Station for 1960, pp. 108–112.Google Scholar
  4. Dalthorp, D. 2004The generalized linear model for spatial data: assessing the effects of environmental covariates on population density in the fieldEntomol. Exp. Appl.111117131CrossRefGoogle Scholar
  5. Dangerfield, J.M., Pik, A.J., Britton, D., Holmes, A., Gillings, M., Oliver, I., Briscoe, D., Beattie, A.J. 2003Patterns of invertebrate biodiversity across a natural edgeAustral Ecol.28227236CrossRefGoogle Scholar
  6. Davies, K.F., Margules, C.R., Lawrence, J.F. 2004A synergistic effect puts rare, specialized species at greater risk of extinctionEcology85265271Google Scholar
  7. Davison, A.C., Hinkley, D.V. 1997Bootstrap Methods and Their ApplicationCambridge University PressCambridge, UKGoogle Scholar
  8. Didham, R.K., Hammond, P.M., Lawton, J.H., Eggleton, P., Stork, N.E. 1998Beetle species responses to tropical forest fragmentationEcol. Monogr.68295323CrossRefGoogle Scholar
  9. Digweed, S.C., Currie, C.R., Cárcamo, H.A., Spence, J.R. 1995Digging out the “digging-in effect” of pitfall traps: influences of depletion and disturbance on catches of ground beetles (Coleoptera: Carabidae)Pedobiologia39561576Google Scholar
  10. Downes, B.J., Barmuta, L.A., Fairweather, P.G., Faith, D.P., Keough, M.J., Lake, P.S., Mapstone, B.D., Quinn, G.P. 2002Monitoring Ecological Impacts: Concepts and Practice in Flowing WatersCambridge University PressCambridge, UKGoogle Scholar
  11. Greenslade, P.J.M. 1964Pitfall trapping as a method for studying populations of Carabidae (Coleoptera)J. Anim. Ecol.33301310CrossRefGoogle Scholar
  12. Greenslade, P.J.M. 1973Sampling ants with pitfall traps: digging-in effectsInsect. Soc.20343353CrossRefGoogle Scholar
  13. Greenslade, P., Greenslade, P.J.M. 1971The use of baits and preservatives in pitfall trapsJ. Aust. Ent. Soc.10253260Google Scholar
  14. Keitt, T.H., Bjornstad, O.N., Dixon, P.M., Citron-Pousty, S. 2002Accounting for spatial pattern when modeling organism–environment interactionsEcography25616625CrossRefGoogle Scholar
  15. Kotze, D.J., Samways, M.J. 2001No general edge effects for invertebrates at Afromontane forest/grassland ecotonesBiodivers. Conserv.10443466CrossRefGoogle Scholar
  16. Legendre, P. 1993Spatial autocorrelation: trouble or new paradigm?Ecology7416591673CrossRefGoogle Scholar
  17. Leponce, M., Theunis, L., Delabie, J.H.C., Roisin, Y. 2004Scale dependence of diversity measures in a leaf-litter ant assemblageEcography27253267CrossRefGoogle Scholar
  18. Luff, M.L. 1968Some effects of formalin on the numbers of Coleoptera caught in pitfall trapsEntomol. Mon. Mag.104115116Google Scholar
  19. Luff, M.L. 1975Some features influencing the efficiency of pitfall trapsOecologia19345357Google Scholar
  20. Magurran, A.E. 2004Measuring Biological DiversityBlackwellMalden, MAGoogle Scholar
  21. Melbourne, B.A. 1999Bias in the effect of habitat structure on pitfall traps: an experimental evaluationAust. J. Ecol.24228239CrossRefGoogle Scholar
  22. Niemelä, J. 1990Spatial distribution of carabid beetles in the southern Finnish taiga: the question of scaleStork, N.E. eds. The Role of Ground Beetles in Ecological and Environmental StudiesInterceptHampshire, UK143155Google Scholar
  23. Niemelä, J., Haila, Y., Puntilla, P. 1996The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradientEcography19352368CrossRefGoogle Scholar
  24. Oksanen J. 2004. Vegan: community ecology package. R package version 1.6–4.Google Scholar
  25. Perner, J., Schueler, S. 2004Estimating the density of ground-dwelling arthropods with pitfall traps using a nested-cross arrayJ. Anim. Ecol.73469477CrossRefGoogle Scholar
  26. R Development Core Team2003R: a language and environment for statistical computingR Foundation for Statistical ComputingVienna, AustriaGoogle Scholar
  27. Rieske, L.K., Buss, L.J. 2001Influence of site on diversity and abundance of ground- and litter-dwelling Coleoptera in Appalachian oak-hickory forestsEnviron. Entomol.30484494CrossRefGoogle Scholar
  28. Sanderson, R.A., Rushton, S.P., Cherril, A.J., Byrne, J.P. 1995Soil, vegetation and space: an analysis of their effects on the invertebrate communities of a moorland in north-east EnglandJ. Appl. Ecol.32506518CrossRefGoogle Scholar
  29. Spence, J.R., Niemelä, J.K. 1994Sampling carabid beetle assemblages with pitfall traps: the madness in the methodCan. Entomol.126881894Google Scholar
  30. Wagner, H.H. 2004Direct multi-scale ordination with canonical correspondence analysisEcology85342351Google Scholar
  31. Ward, D.F., New, T.R., Yen, A.L. 2001Effects of pitfall trap spacing on the abundancerichness and composition of invertebrate catchesJ. Insect Conserv.54753CrossRefGoogle Scholar
  32. Welsh, A.H., Cunningham, R.B., Donnelley, C.F., Lindenmayer, D.B. 1996Modelling abundance of rare species: statistical models for counts with extra zerosEcol. Model.88297308CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Susan C. Baker
  • Leon A. Barmuta

There are no affiliations available

Personalised recommendations