QRS prolongation after cardiac resynchronization therapy is a predictor of persistent mechanical dyssynchrony

  • Oguz Karaca
  • Onur Omaygenc
  • Beytullah Cakal
  • Sinem Deniz Cakal
  • Irfan Barutcu
  • Bilal Boztosun
  • Fethi Kilicaslan



Prolonged QRS duration is the main selection criterion for cardiac resynchronization therapy (CRT) which ameliorates left ventricular mechanical dyssynchrony (MD). However, consequences of post-CRT QRS prolongation and residual MD have been poorly evaluated. We aimed to define the predictors of persistent MD and hypothesized that CRT-induced QRS change (ΔQRS) might have an impact on residual MD after CRT.


A total of 80 patients receiving CRT were included in the study. ΔQRS was calculated as the difference between the baseline and paced QRS intervals. Residual MD was assessed early after device implantation with a longitudinal dyssynchrony index (Yu index). Significant MD was defined as a Yu index ≥ 33 msec. Two groups were created based on residual MD and compared according to clinical, electrocardiographic and echocardiographic features.


Patients with persistent MD had longer paced QRS durations (182.5 ± 16.2 vs. 165.4 ± 22.5 msec, p = 0.03) and were less likely to have left ventricular (LV) leads located in the posterolateral vein (53 % vs. 85 %, p = 0.002). The linear correlation between the ΔQRS and the Yu index values was modest (Spearman’s rho = −0.341, p = 0.002); additionally, a prolonged QRS was strongly associated with MD after CRT (p = 0.00008). Both LV lead localization and CRT-induced QRS prolongation emerged as the significant predictors of persistent MD. A biventricularly paced QRS more than 10 msec longer than the pre-paced QRS width was predictive of persistent MD after CRT (sensitivity = 80 %, specificity = 62 %).


ΔQRS was found to be associated with residual MD after CRT. Ten milliseconds of QRS prolongation predicted persistent MD after CRT.


Cardiac resynchronization therapy Paced QRS QRS prolongation Mechanical dyssynchrony 



The authors are grateful to the entire staff and the nurses of the cardiology department of Medipol University for their excellent support and cooperation during the entire study.

Compliance with ethical standards

The local ethics committee approved the study protocol, and a written informed consent was obtained from all participants.


  1. 1.
    Cleland, J. G., Freemantle, N., Erdmann, E., Gras, D., Kappenberger, L., Tavazzi, L., & Daubert, J. C. (2012). Long-term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization-Heart Failure (CARE-HF) trial. Eur J Heart Fail, 14(6), 628–634.CrossRefPubMedGoogle Scholar
  2. 2.
    Goldenberg, I., Hall, W. J., Beck, C. A., Moss, A. J., Barsheshet, A., McNitt, S., Polonsky, S., et al. (2011). Reduction of the risk of recurring heart failure events with cardiac resynchronization therapy: MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy). J Am Coll Cardiol, 58(7), 729–737.CrossRefPubMedGoogle Scholar
  3. 3.
    Brignole, M., Auricchio, A., Baron-Esquivias, G., Bordachar, P., Boriani, G., Breithardt, O. A., Cleland, J., et al. (2013). ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Europace, 15(8), 1070–1118.CrossRefPubMedGoogle Scholar
  4. 4.
    Khairy, P., Van Hare, G. F., Balaji, S., Berul, C. I., Cecchin, F., Cohen, M. I., Daniels, J. C., et al. (2014). PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Can J Cardiol, 30(10), e1–e63.CrossRefPubMedGoogle Scholar
  5. 5.
    Birnie, D. H., & Tang, A. S. (2006). The problem of non-response to cardiac resynchronization therapy. Curr Opin Cardiol, 21(1), 20–26.CrossRefPubMedGoogle Scholar
  6. 6.
    Dong, Y. X., Powell, B. D., Asirvatham, S. J., Friedman, P. A., Rea, R. F., Webster, T. L., Brooke, K. L., et al. (2012). Left ventricular lead position for cardiac resynchronization: a comprehensive cinegraphic, echocardiographic, clinical, and survival analysis. Europace, 14(8), 1139–1147.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, L., Tiongson, J. E., Obrzut, S., McDaniel, M. B., Chang, H. Y., Patel, J., Friedman, P. J., et al. (2012). Standard chest radiograph predicts left ventricular lead location in chronic resynchronization therapy patients more accurately than intraoperative fluoroscopy. J Interv Card Electrophysiol, 35(3), 323–330.CrossRefPubMedGoogle Scholar
  8. 8.
    Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011). Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol, 107(6), 927–934.CrossRefPubMedGoogle Scholar
  9. 9.
    Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F. A., et al. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging, 16(3), 233–270.CrossRefPubMedGoogle Scholar
  10. 10.
    Lancellotti, P., Tribouilloy, C., Hagendorff, A., Popescu, B. A., Edvardsen, T., Pierard, L. A., Badano, L., et al. (2013). Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging, 14(7), 611–644.CrossRefPubMedGoogle Scholar
  11. 11.
    Voigt, J. U., Pedrizzetti, G., Lysyansky, P., Marwick, T. H., Houle, H., Baumann, R., Pedri, S., et al. (2015). Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr, 28(2), 183–193.CrossRefPubMedGoogle Scholar
  12. 12.
    Gorcsan, J., 3rd, Abraham, T., Agler, D. A., Bax, J. J., Derumeaux, G., Grimm, R. A., Martin, R., et al. (2008). Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting—a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr, 21(3), 191–213.CrossRefPubMedGoogle Scholar
  13. 13.
    Yu, C. M., Zhang, Q., Fung, J. W. H., Chan, H. C., Chan, Y. S., Yip, G. W., Kong, S. L., et al. (2005). A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol, 45, 677–684.CrossRefPubMedGoogle Scholar
  14. 14.
    Lecoq, G., Leclercq, C., Leray, E., Crocq, C., Alonso, C., de Place, C., Mabo, P., et al. (2005). Clinical and electrocardiographic predictors of a positive response to cardiac resynchronization therapy in advanced heart failure. Eur Heart J, 26(11), 1094–1100.CrossRefPubMedGoogle Scholar
  15. 15.
    Hsing, J. M., Selzman, K. A., Leclercq, C., Pires, L. A., McLaughlin, M. G., McRae, S. E., Peterson, B. J., et al. (2011). Paced left ventricular QRS width and ECG parameters predict outcomes after cardiac resynchronization therapy: PROSPECT-ECG substudy. Circ Arrhythm Electrophysiol, 4(6), 851–857.CrossRefPubMedGoogle Scholar
  16. 16.
    Risum, N., Williams, E. S., Khouri, M. G., Jackson, K. P., Olsen, N. T., Jons, C., Storm, K. S., et al. (2013). Mechanical dyssynchrony evaluated by tissue Doppler cross-correlation analysis is associated with long-term survival in patients after cardiac resynchronization therapy. Eur Heart J, 34(1), 48–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Miyoshi, F., Kobayashi, Y., Itou, H., Onuki, T., Matsuyama, T., Watanabe, N., Liu, C., et al. (2005). Prolonged paced QRS duration as a predictor for congestive heart failure in patients with right ventricular apical pacing. Pacing Clin Electrophysiol, 28(11), 1182–1188.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen, S., Yin, Y., Lan, X., Liu, Z., Ling, Z., Su, L., Kiuchi, M. G., et al. (2013). PREDICT-heart failure study international group. Paced QRS duration as a predictor for clinical heart failure events during right ventricular apical pacing in patients with idiopathic complete atrioventricular block: results from an observational cohort study (PREDICT-HF). Eur J Heart Fail, 15(3), 352–359.CrossRefPubMedGoogle Scholar
  19. 19.
    Derval, N., Bordachar, P., Lim, H. S., Sacher, F., Ploux, S., Laborderie, J., Steendijk, P., et al. (2014). Impact of pacing site on QRS duration and its relationship to hemodynamic response in cardiac resynchronization therapy for congestive heart failure. J Cardiovasc Electrophysiol, 25(9), 1012–1020.CrossRefPubMedGoogle Scholar
  20. 20.
    Jastrzebski, M., Wilinski, J., Fijorek, K., Sondej, T., & Czarnecka, D. (2013). Mortality and morbidity in cardiac resynchronization patients: impact of lead position, paced left ventricular QRS morphology and other characteristics on long-term outcome. Europace, 15(2), 258–265.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Oguz Karaca
    • 1
  • Onur Omaygenc
    • 1
  • Beytullah Cakal
    • 1
  • Sinem Deniz Cakal
    • 1
  • Irfan Barutcu
    • 1
  • Bilal Boztosun
    • 1
  • Fethi Kilicaslan
    • 1
  1. 1.Cardiology DepartmentMedipol University Faculty of MedicineİstanbulTurkey

Personalised recommendations