Advertisement

Implanted endocardial lead characteristics and risk of stroke or transient ischemic attack

  • Vaibhav R. Vaidya
  • Christopher V. DeSimone
  • Samuel J. Asirvatham
  • Vishnu M. Chandra
  • Amit Noheria
  • David O. Hodge
  • Joshua P. Slusser
  • Alejandro A. Rabinstein
  • Paul A. Friedman
Article

Abstract

Introduction

Patent foramen ovale (PFO) has been recently implicated as a strong predictor of stroke or transient ischemic attack (TIA) in patients with implanted pacemaker or defibrillation leads. Leads in the right heart can form thrombi that embolize to the pulmonary circulation and raise pulmonary pressure. This increases right-to-left shunting through PFO or intrapulmonary shunts and can result in paradoxical embolism. We sought to determine whether certain lead characteristics confer a higher thrombogenic risk resulting in stroke/TIAs in patients either with or without a PFO.

Methods

We retrospectively analyzed 5,646 patients (mean age 67.3 ± 16.3 years, 64 % male) who had endocardial device leads implanted in 2000–2010. We performed univariate and multivariate-adjusted proportional hazards models to determine association of lead characteristics with stroke/TIA during follow-up.

Results

On univariate analysis, passively fixated tined leads were associated with more stroke/TIAs (HR 1.77, 95 % CI 1.27, 2.47; p < 0.001), whereas presence of defibrillation coil was associated with fewer stroke/TIAs (HR 0.59, 95 % CI 0.42–0.84; p = 0.003). Number of leads per patient, presence of atrial lead, maximum lead size, tip shape, and type of insulating material were not associated with stoke/TIA. On multivariate analyses adjusting for age, sex, diagnosis of PFO, and prior history of stroke/TIA, the presence of tined leads was associated with stroke/TIA (HR 1.41, 95 % CI 1.00–1.97; p = 0.049). Defibrillation coils were no longer associated with lower stroke/TIA on multivariate analysis.

Conclusions

Most physical characteristics of contemporary leads do not impact rate of stroke/TIA among patients receiving implantable devices. The presence of a PFO is a major risk factor for stroke/TIA in patients with endovascular leads.

Keywords

Device Leads Stroke TIA Patent foramen ovale 

Abbreviations

CI

Confidence interval

CIED

Cardiovascular implantable electronic device

HR

Hazard ratio

PFO

Patent foramen ovale

RVSP

Right ventricular systolic pressure

TIA

Transient ischemic attack

References

  1. 1.
    Epstein, A. E., DiMarco, J. P., Ellenbogen, K. A., et al. (2013). 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Journal of the American College of Cardiology, 61, e6–e75.PubMedCrossRefGoogle Scholar
  2. 2.
    van Rees, J. B., de Bie, M. K., Thijssen, J., et al. (2011). Implantation-related complications of implantable cardioverter-defibrillators and cardiac resynchronization therapy devices: a systematic review of randomized clinical trials. Journal of the American College of Cardiology, 58, 995–1000.PubMedCrossRefGoogle Scholar
  3. 3.
    Greenspon, A. J., Patel, J. D., Lau, E., et al. (2012). Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. Journal of the American College of Cardiology, 60, 1540–1545.PubMedCrossRefGoogle Scholar
  4. 4.
    Korkeila, P. J., Saraste, M. K., Nyman, K. M., et al. (2006). Transesophageal echocardiography in the diagnosis of thrombosis associated with permanent transvenous pacemaker electrodes. Pacing and Clinical Electrophysiology, 29, 1245–1250.PubMedCrossRefGoogle Scholar
  5. 5.
    Fehske, W., Jung, W., Omran, H., et al. (1995). Multiplane transesophageal echocardiographic evaluation of transvenous defibrillation leads. Journal of Clinical Ultrasound, 23, 153–162.PubMedCrossRefGoogle Scholar
  6. 6.
    Alizadeh, A., Maleki, M., Bassiri, H., et al. (2006). Evaluation of atrial thrombus formation and atrial appendage function in patients with pacemaker by transesophageal echocardiography. Pacing and Clinical Electrophysiology, 29, 1251–1254.PubMedCrossRefGoogle Scholar
  7. 7.
    Supple, G. E., Ren, J. F., Zado, E. S., et al. (2011). Mobile thrombus on device leads in patients undergoing ablation: identification, incidence, location, and association with increased pulmonary artery systolic pressure. Circulation, 124, 772–778.PubMedCrossRefGoogle Scholar
  8. 8.
    Chow, B., & Tang, A. (2005). Pulmonary embolism in a man with an implantable cardioverter defibrillator. CMAJ, 173, 487.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    van Rooden, C. J., Molhoek, S. G., Rosendaal, F. R., et al. (2004). Incidence and risk factors of early venous thrombosis associated with permanent pacemaker leads. Journal of Cardiovascular Electrophysiology, 15, 1258–1262.PubMedCrossRefGoogle Scholar
  10. 10.
    Korkeila, P., Mustonen, P., Koistinen, J., et al. (2010). Clinical and laboratory risk factors of thrombotic complications after pacemaker implantation: a prospective study. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology : Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology, 12, 817–824.CrossRefGoogle Scholar
  11. 11.
    Novak, M., Dvorak, P., Kamaryt, P., et al. (2009). Autopsy and clinical context in deceased patients with implanted pacemakers and defibrillators: intracardiac findings near their leads and electrodes. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology : Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology, 11, 1510–1516.CrossRefGoogle Scholar
  12. 12.
    Desimone, C. V., Desimone, D. C., Hagler, D. J., et al. (2013). Cardioembolic stroke in patients with patent foramen ovale and implanted cardiac leads. Pacing and Clinical Electrophysiology, 36, 50–54.PubMedCrossRefGoogle Scholar
  13. 13.
    DeSimone, C. V., DeSimone, D. C., Patel, N. A., et al. (2012). Implantable cardiac devices with patent foramen ovale–a risk factor for cardioembolic stroke? Journal of Interventional Cardiac Electrophysiology, 35, 159–162.PubMedCrossRefGoogle Scholar
  14. 14.
    Velthuis, S., Buscarini, E., van Gent, M. W., et al. (2013). Grade of pulmonary right-to-left shunt on contrast echocardiography and cerebral complications: a striking association. Chest, 144(2):542–8.Google Scholar
  15. 15.
    Abushora, M. Y., Bhatia, N., Alnabki, Z., et al. (2013). Intrapulmonary shunt is a potentially unrecognized cause of ischemic stroke and transient ischemic attack. Journal of the American Society of Echocardiography, 26, 683–690.PubMedCrossRefGoogle Scholar
  16. 16.
    DeSimone, C. V., Friedman, P. A., Noheria, A., et al. (2013). Stroke or transient ischemic attack in patients with transvenous pacemaker or defibrillator and echocardiographically detected patent foramen ovale. Circulation, 128, 1433–1441.PubMedCrossRefGoogle Scholar
  17. 17.
    Tobis, J., & Shenoda, M. (2012). Percutaneous treatment of patent foramen ovale and atrial septal defects. Journal of the American College of Cardiology, 60, 1722–1732.PubMedCrossRefGoogle Scholar
  18. 18.
    Marriott, K., Manins, V., Forshaw, A., et al. (2013). Detection of right-to-left atrial communication using agitated saline contrast imaging: experience with 1162 patients and recommendations for echocardiography. Journal of the American Society of Echocardiography, 26, 96–102.PubMedCrossRefGoogle Scholar
  19. 19.
    Woods, T. D., & Patel, A. (2006). A critical review of patent foramen ovale detection using saline contrast echocardiography: when bubbles lie. Journal of the American Society of Echocardiography, 19, 215–222.PubMedCrossRefGoogle Scholar
  20. 20.
    Lovering, A. T., Elliott, J. E., Beasley, K. M., et al. (2010). Pulmonary pathways and mechanisms regulating transpulmonary shunting into the general circulation: an update. Injury, 41(Suppl 2), S16–S23.PubMedCrossRefGoogle Scholar
  21. 21.
    Ozcan, C., Jahangir, A., Friedman, P. A., et al. (2001). Long-term survival after ablation of the atrioventricular node and implantation of a permanent pacemaker in patients with atrial fibrillation. New England Journal of Medicine, 344, 1043–1051.PubMedCrossRefGoogle Scholar
  22. 22.
    DeSimone, C. V., DeSimone, D. C., Patel, N. A., et al. (2012). Implantable cardiac devices with patent foramen ovale—a risk factor for cardioembolic stroke? Journal of Interventional Cardiac Electrophysiology, 35, 159–162.Google Scholar
  23. 23.
    Laurie, S. S., Yang, X., Elliott, J. E., et al. (2010). Hypoxia-induced intrapulmonary arteriovenous shunting at rest in healthy humans. Journal of Applied Physiology, 109, 1072–1079.PubMedCrossRefGoogle Scholar
  24. 24.
    Lovering, A. T., Romer, L. M., Haverkamp, H. C., et al. (2008). Intrapulmonary shunting and pulmonary gas exchange during normoxic and hypoxic exercise in healthy humans. Journal of Applied Physiology, 104, 1418–1425.PubMedCrossRefGoogle Scholar
  25. 25.
    Haghjoo, M., Nikoo, M. H., Fazelifar, A. F., et al. (2007). Predictors of venous obstruction following pacemaker or implantable cardioverter-defibrillator implantation: a contrast venographic study on 100 patients admitted for generator change, lead revision, or device upgrade. Europace, 9, 328–332.PubMedCrossRefGoogle Scholar
  26. 26.
    Korkeila, P., Nyman, K., Ylitalo, A., et al. (2007). Venous obstruction after pacemaker implantation. Pacing and Clinical Electrophysiology, 30, 199–206.PubMedCrossRefGoogle Scholar
  27. 27.
    Rozmus, G., Daubert, J. P., Huang, D. T., et al. (2005). Venous thrombosis and stenosis after implantation of pacemakers and defibrillators. Journal of Interventional Cardiac Electrophysiology, 13, 9–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Bulur, S., Vural, A., Yazici, M., et al. (2010). Incidence and predictors of subclavian vein obstruction following biventricular device implantation. Journal of Interventional Cardiac Electrophysiology, 29, 199–202.PubMedCrossRefGoogle Scholar
  29. 29.
    Bracke, F., Meijer, A., & Van Gelder, B. (2003). Venous occlusion of the access vein in patients referred for lead extraction: influence of patient and lead characteristics. Pacing and Clinical Electrophysiology, 26, 1649–1652.PubMedCrossRefGoogle Scholar
  30. 30.
    de Cock, C. C., Vinkers, M., Van Campe, L. C., et al. (2000). Long-term outcome of patients with multiple (> or = 3) noninfected transvenous leads: a clinical and echocardiographic study. Pacing and Clinical Electrophysiology, 23, 423–426.PubMedCrossRefGoogle Scholar
  31. 31.
    Reinig, M., White, M., Levine, M., et al. (2007). Left ventricular endocardial pacing: a transarterial approach. Pacing and Clinical Electrophysiology, 30, 1464–1468.PubMedCrossRefGoogle Scholar
  32. 32.
    Chow, B. J., Hassan, A. H., Chan, K. L., et al. (2003). Prevalence and significance of lead-related thrombi in patients with implantable cardioverter defibrillators. American Journal of Cardiology, 91, 88–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vaibhav R. Vaidya
    • 1
  • Christopher V. DeSimone
    • 5
  • Samuel J. Asirvatham
    • 4
    • 5
  • Vishnu M. Chandra
    • 6
  • Amit Noheria
    • 5
  • David O. Hodge
    • 2
  • Joshua P. Slusser
    • 2
  • Alejandro A. Rabinstein
    • 3
  • Paul A. Friedman
    • 5
  1. 1.Department of Internal MedicineMayo ClinicRochesterUSA
  2. 2.Department of StatisticsMayo ClinicRochesterUSA
  3. 3.Department of NeurologyMayo ClinicRochesterUSA
  4. 4.Department of Pediatrics and Adolescent MedicineMayo ClinicRochesterUSA
  5. 5.Division of Cardiovascular DiseasesMayo ClinicRochesterUSA
  6. 6.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations