Skip to main content

Advertisement

Log in

Revisiting heart activation-conduction physiology, part I: atria

  • Commentary
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

This discussion paper re-examines the conduction-activation of the atria, based on observations, with respect to the complexity of the heart as an organ with a brain, and its evolution from a peristaltic tube. The atria do not require a specialized conduction system because they use the subendocardial layer to produce centripetal transmural activation fronts, regardless of the anatomical and histological organization of the transmural atrial wall. This has been described as “two-layer” physiology which provides robust transmission of activation from the sinus to the AV node via a centripetal transmural activation front. New productive insights can come from re-examining the physiology, not only during sinus rhythm but also during atrial tachycardias, in particular atrial flutter and atrial fibrillation (AF). During common flutter, the areas of slow conduction, in the isthmus and following trabeculations, particularly the subendocardial layer confines conduction through the trabeculations which supports re-entry. During experimental or postoperative flutter, the circular 2D activation around the obstacle follows the physiological transmural activation. Understanding this physiology offers insights into AF. During acute or protracted AF, the presence of stationary or drifting rotors is characteristic and consistent with normal physiological 2D atrial activation, suggesting that suppressing physiological transmural activation of AF will permanently restore normal sinus node atrial activation. In contrast, during permanent AF, normal 2D activation is abolished; the presence of transmural, serpentine, and chaotic atrial activation suggests that the normal physiological activation pattern has been replaced by a new, irreversible variety of atrial conduction that is a new physiology, which is consistent with evolution of complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Suma, K., Shimada, M., & Tawara, S. (2000). Das Reizleitungssystem Des Säugetierherzens [The Conduction System of the Mammalian Heart]. Jena: Gustav Fischer; 1906. (English translation). London: Imperial College Press.

    Google Scholar 

  2. Armour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165–176.

    Article  CAS  PubMed  Google Scholar 

  3. Armour, J. A. (2007). The little brain on the heart. Cleveland Clinic Journal of Medicine, 74(Suppl 1), S48–S51.

    Article  PubMed  Google Scholar 

  4. Armour, J. A. (1991). Intrinsic cardiac neurons. Journal of Cardiovascular Electrophysiology, 2, 331–341.

    Article  Google Scholar 

  5. Ho, S. Y., Anderson, R. H., & Sanchez-Quintana, D. (2002). Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovascular Research, 54(2), 325–336.

    Article  CAS  PubMed  Google Scholar 

  6. Armour, J. A. (2011). Physiology of the intrinsic cardiac nervous system. Heart Rhythm, 8(5), 739.

    Article  PubMed  Google Scholar 

  7. Moorman, A. F. M., & Christoffels, V. M. (2005). Concepts of cardiac development. In N. M. van Hemel & J. M. T. de Bakker Vermeulen (Eds.), Exclusion or targeting (pp. 103–112). Nieuwegein: Grafishe Producties Budde-Elinjwijk.

    Google Scholar 

  8. Perez-Lugones, A., McMahon, J. T., Ratliff, N. B., et al. (2003). Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14(8), 803–809.

    Article  PubMed  Google Scholar 

  9. Chen, P. S., Chou, C. C., Tan, A. Y., et al. (2006). The mechanisms of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 17(Suppl 3), S2–S7.

    Article  PubMed  Google Scholar 

  10. Jones, G., Spencer, B. D., Adeniran, I., & Zhang, H. (2012). Development of biophysically detailed electrophysiological models for pacemaking and non-pacemaking human pulmonary vein cardiomyocytes. Conference Proceedings IEEE Engineering Medical and Biological Society, 2012, 199–202.

    Google Scholar 

  11. Arora, R. C., Waldmann, M., Hopkins, D. A., & Armour, J. A. (2003). Porcine intrinsic cardiac ganglia. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 271(1), 249–258.

    Article  CAS  Google Scholar 

  12. Gabella, G. (2012). Cells of visceral smooth muscles. Journal of Smooth Muscle Research, 48(4), 65–95.

    Article  PubMed  Google Scholar 

  13. Duthie, H. L. (1974). Electrical activity of gastrointestinal smooth muscle. Gut, 15(8), 669–681.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dinning, P. G., Costa, M., Brookes, S. J., & Spencer, N. J. (2012). Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303(1), G83–G92.

    Article  CAS  PubMed  Google Scholar 

  15. Pozzoli C, Poli E. Assessment of intestinal peristalsis in vitro. Curr Protoc Toxicol 2012 November; Chapter 21:Unit.

  16. Puech, P., Esclavissat, M., Sodi-pallares, D., & Cisneros, F. (1954). Normal auricular activation in the dog’s heart. American Heart Journal, 47(2), 174–191.

    Article  CAS  PubMed  Google Scholar 

  17. Lemery, R. (2002). Bi-atrial mapping of atrial arrhythmias. Cardiac Electrophysiology Review, 6(4), 378–382.

    Article  PubMed  Google Scholar 

  18. Lemery, R., Soucie, L., Martin, B., Tang, A. S., Green, M., & Healey, J. (2004). Human study of biatrial electrical coupling: determinants of endocardial septal activation and conduction over interatrial connections. Circulation, 110(15), 2083–2089.

    Article  PubMed  Google Scholar 

  19. Guiraudon, G. M., Jones, D. L., Skanes, A., Tweedie, E., & Klein, G. J. (2013). Revisiting right atrial isolation rationale for atrial fibrillation: functional anatomy of interatrial connections. Journal of Interventional Cardiac Electrophysiology, 37(3), 267–273.

    Article  PubMed  Google Scholar 

  20. James, T. N. (1963). The connecting pathways between the sinus node and A-V node and between the right and left atrium. American Heart Journal, 66(4), 498–508.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobsen, P. K., Klein, G. J., Gula, L. J., et al. (2012). Voltage-guided ablation technique for cavotricuspid isthmus-dependent atrial flutter: refining the continuous line. Journal of Cardiovascular Electrophysiology, 23(6), 672–676.

    Article  PubMed  Google Scholar 

  22. Mechulan, A., Gula, L. J., Klein, G. J., et al. (2013). Further evidence for the “muscle bundle” hypothesis of cavotricuspid isthmus conduction: physiological proof, with clinical implications for ablation. Journal of Cardiovascular Electrophysiology, 24(1), 47–52.

    Article  PubMed  Google Scholar 

  23. Klein, G. J., Guiraudon, G. M., Sharma, A. D., & Milstein, S. (1986). Demonstration of macroreentry and feasibility of operative therapy in the common type of atrial flutter. American Journal of Cardiology, 57(8), 587–591.

    Article  CAS  PubMed  Google Scholar 

  24. Cabrera, J. A., Sanchez-Quintana, D., Farre, J., Rubio, J. M., & Ho, S. Y. (2005). The inferior right atrial isthmus: further architectural insights for current and coming ablation technologies. Journal of Cardiovascular Electrophysiology, 16(4), 402–408.

    Article  PubMed  Google Scholar 

  25. Jalife, J., Berenfeld, O., & Mansour, M. (2002). Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204–216.

    Article  CAS  PubMed  Google Scholar 

  26. Jalife, J. (2003). Rotors and spiral waves in atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14(7), 776–780.

    Article  PubMed  Google Scholar 

  27. Jalife, J., Berenfeld, O., Skanes, A., & Mandapati, R. (1998). Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both? Journal of Cardiovascular Electrophysiology, 9(8 Suppl), S2–S12.

    CAS  PubMed  Google Scholar 

  28. Berenfeld, O., & Oral, H. (2012). The quest for rotors in atrial fibrillation: different nets catch different fishes. Heart Rhythm, 9(9), 1440–1441.

    Article  PubMed  Google Scholar 

  29. Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation, 101(2), 194–199.

    Article  CAS  PubMed  Google Scholar 

  30. Vaquero, M., Calvo, D., & Jalife, J. (2008). Cardiac fibrillation: from ion channels to rotors in the human heart. Heart Rhythm, 5(6), 872–879.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Allessie, M. A., Bonke, F. I., & Schopman, F. J. (1973). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circulation Research, 33(1), 54–62.

    Article  CAS  PubMed  Google Scholar 

  32. Eckstein, J., Zeemering, S., Linz, D., et al. (2013). Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation: evidence from simultaneous endo-epicardial high-density activation mapping. Circulation. Arrhythmia and Electrophysiology, 6(2), 334–341.

    Article  PubMed  Google Scholar 

  33. de Groot, N. M., Houben, R. P., Smeets, J. L., et al. (2010). Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation, 122(17), 1674–1682.

    Article  PubMed  Google Scholar 

  34. Kumagai, K., Ogawa, M., Noguchi, H., Yasuda, T., Nakashima, H., & Saku, K. (2004). Electrophysiologic properties of pulmonary veins assessed using a multielectrode basket catheter. Journal of the American College of Cardiology, 43(12), 2281–2289.

    Article  PubMed  Google Scholar 

  35. Haissaguerre, M., Hocini, M., Shah, A. J., et al. (2013). Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. Journal of Cardiovascular Electrophysiology, 24(6), 711–717.

    Article  PubMed  Google Scholar 

  36. Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W. J., & Miller, J. M. (2012). Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. Journal of the American College of Cardiology, 60(7), 628–636.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Shah, A. J., Hocini, M., Xhaet, O., et al. (2013). Validation of novel 3-dimensional electrocardiographic mapping of atrial tachycardias by invasive mapping and ablation: a multicenter study. Journal of the American College of Cardiology, 62(10), 889–897.

    Article  PubMed  Google Scholar 

  38. Haissaguerre M, Hocini M, Shah AJ et al. (2012) Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J Cardiovasc Electrophysiol December 17.

  39. Corley, S. D., Epstein, A. E., DiMarco, J. P., et al. (2004). Relationships between sinus rhythm, treatment, and survival in the atrial fibrillation follow-up investigation of rhythm management (AFFIRM) study. Circulation, 109(12), 1509–1513.

    Article  PubMed  Google Scholar 

  40. Waldo, A. L. (1999). Management of atrial fibrillation: the need for AFFIRMative action. AFFIRM investigators. Atrial fibrillation follow-up investigation of rhythm management. American Journal of Cardiology, 84(6), 698–700.

    Article  CAS  PubMed  Google Scholar 

  41. Defauw, J. J., Guiraudon, G. M., van Hemel, N. M., Vermeulen, F. E., Kingma, J. H., & de Bakker, J. M. (1992). Surgical therapy of paroxysmal atrial fibrillation with the “corridor” operation. Annals of Thoracic Surgery, 53(4), 564–570.

    Article  CAS  PubMed  Google Scholar 

  42. Guiraudon, C. M., Campbell, C. S., Jones, D. L., McLellan, D. G., & MacDonald, J. L. (1985). Combined sino-atrial node atrio-ventricular isolation: a surgical alternative to His bundle ablation in patients with atrial fibrillation. Circulation, 72(Supp II), 220.

    Google Scholar 

  43. Leitch, J. W., Klein, G., Yee, R., & Guiraudon, G. (1991). Sinus node-atrioventricular node isolation: long-term results with the “corridor” operation for atrial fibrillation. Journal of the American College of Cardiology, 17(4), 970–975.

    Article  CAS  PubMed  Google Scholar 

  44. van Hemel, N. M., Defauw, J. J., Kingma, J. H., et al. (1994). Long-term results of the corridor operation for atrial fibrillation. British Heart Journal, 71(2), 170–176.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard M. Guiraudon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiraudon, G.M., Jones, D.L. Revisiting heart activation-conduction physiology, part I: atria. J Interv Card Electrophysiol 40, 9–15 (2014). https://doi.org/10.1007/s10840-014-9884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-014-9884-0

Keywords

Navigation