Advertisement

A combination of P wave electrocardiography and plasma brain natriuretic peptide level for predicting the progression to persistent atrial fibrillation: comparisons of sympathetic activity and left atrial size

  • Yasushi Akutsu
  • Kyouichi Kaneko
  • Yusuke Kodama
  • Fumito Miyoshi
  • Hui-Ling Li
  • Norikazu Watanabe
  • Taku Asano
  • Kaoru Tanno
  • Jumpei Suyama
  • Atsuo Namiki
  • Takehiko Gokan
  • Youichi Kobayashi
Article

Abstract

Purpose

Development of atrial fibrillation (AF) is complexly associated with electrical and structural remodeling and other factors every stage of AF development. We hypothesized that P wave electrocardiography with an elevated brain natriuretic peptide (BNP) level would be associated with the progression to persistence from paroxysmal AF.

Methods

P wave electrocardiography such as a maximum P wave duration (MPWD) and dispersion by 12-leads ECG, heart/mediastinum (H/M) ratio by delayed iodine-123 metaiodobenzylguanidine scintigraphic imaging, left ventricular ejection fraction (LVEF), and left atrial dimension (LAD) by echocardiography, and plasma BNP level were measured to evaluate the electrical and structural properties and sympathetic activity in 71 patients (mean ± standard deviation, age: 67 ± 13 years, 63.4 % males) with idiopathic paroxysmal AF.

Results

Over a 12.9-year follow-up period, AF developed into persistent AF in 30 patients. A wider MPWD (>129 ms) (p = 0.001), wider P wave dispersion (>60 ms) (p = 0.001), LAD enlargement (>40 mm) (p = 0.001), higher BNP level (>72 pg/mL) (p = 0.002), lower H/M ratio (≤2.7) (p = 0.025), and lower LVEF (≤60 %) (p = 0.035) were associated with the progression to persistent AF, and the wide MPWD was an independently powerful predictor of the progression to persistent AF with a hazard ratio (HR) of 5.49 [95 % confidence interval (CI) 2.38–12.7, p < 0.0001] after adjusting for potential confounding variables, such as age and sex. The combination of wide MPWD and elevated BNP level was additive and incremental prognostic power with 13.3 [2.16–13, p < 0.0001].

Conclusion

The wide MPWD with elevated BNP level was associated with the progression to persistent AF.

Keywords

P wave duration Brain natriuretic peptide Electrical remodeling Sympathetic nervous system innervation Paroxysmal atrial fibrillation Persistent atrial fibrillation 

References

  1. 1.
    Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S. A., et al. (2012). 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace, 14, 528–606.PubMedCrossRefGoogle Scholar
  2. 2.
    Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: mechanisms and implications. Circulation: Arrhythmia and Electrophysiology, 1, 62–73.CrossRefGoogle Scholar
  3. 3.
    de Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R. J., et al. (2010). Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. Journal of the American College of Cardiology, 55, 725–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Anné, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., et al. (2007). Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model. Journal of Molecular and Cellular Cardiology, 43, 148–158.PubMedCrossRefGoogle Scholar
  5. 5.
    Iwasaki, Y. K., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial fibrillation pathophysiology: implications for management. Circulation, 124, 2264–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Todd, D. M., Fynn, S. P., Walden, A. P., Hobbs, W. J., Arya, S., & Garratt, C. J. (2004). Repetitive 4-week periods of atrial electrical remodeling promote stability of atrial fibrillation: time course of a second factor involved in the self-perpetuation of atrial fibrillation. Circulation, 109, 1434–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Benjamin, E. J., Chen, P. S., Bild, D. E., Mascette, A. M., Albert, C. M., Alonso, A., et al. (2009). Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation, 119, 606–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Akutsu, Y., Kaneko, K., Kodama, Y., Li, H. L., Suyama, J., Shinozuka, A., et al. (2011). Iodine-123 mIBG imaging for predicting the development of atrial fibrillation. JACC: Cardiovascular Imaging, 4, 78–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Shibazaki, K., Kimura, K., Fujii, S., Sakai, K., & Iguchi, Y. (2012). Brain natriuretic peptide levels as a predictor for new atrial fibrillation during hospitalization in patients with acute ischemic stroke. The American Journal of Cardiology, 109, 1303–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Wazni, O. M., Martin, D. O., Marrouche, N. F., Latif, A. A., Ziada, K., Shaaraoui, M., et al. (2004). Plasma B-type natriuretic peptide levels predict postoperative atrial fibrillation in patients undergoing cardiac surgery. Circulation, 110, 124–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Kallergis, E. M., Manios, E. G., Kanoupakis, E. M., Mavrakis, H. E., Goudis, C. A., Maliaraki, N. E., et al. (2010). Effect of sinus rhythm restoration after electrical cardioversion on apelin and brain natriuretic peptide prohormone levels in patients with persistent atrial fibrillation. The American Journal of Cardiology, 105, 90–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Perez, M. V., Dewey, F. E., Marcus, R., Ashley, E. A., Al-Ahmad, A. A., Wang, P. J., et al. (2009). Electrocardiographic predictors of atrial fibrillation. American Heart Journal, 158, 622–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Magnani, J. W., Johnson, V. M., Sullivan, L. M., Gorodeski, E. Z., Schnabel, R. B., Lubitz, S. A., et al. (2011). P wave duration and risk of longitudinal atrial fibrillation in persons ≥60 years old (from the Framingham Heart Study). The American Journal of Cardiology, 107, 917–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Vassilikos, V., Dakos, G., Chatzizisis, Y. S., Chouvarda, I., Karvounis, C., Maynard, C., et al. (2011). Novel non-invasive P wave analysis for the prediction of paroxysmal atrial fibrillation recurrences in patients without structural heart disease: a prospective pilot study. International Journal of Cardiology, 153, 165–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Aytemir, K., Amasyali, B., Kose, S., Kilic, A., Abali, G., Oto, A., et al. (2004). Maximum P-wave duration and P-wave dispersion predict recurrence of paroxysmal atrial fibrillation in patients with Wolff-Parkinson-White syndrome after successful radiofrequency catheter ablation. Journal of Interventional Cardiac Electrophysiology, 11, 21–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Casaclang-Verzosa, G., Gersh, B. J., & Tsang, T. S. (2008). Structural and functional remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation. Journal of the American College of Cardiology, 51, 1–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Goetze, J. P., Friis-Hansen, L., Rehfeld, J. F., Nilsson, B., & Svendsen, J. H. (2006). Atrial secretion of B-type natriuretic peptide. European Heart Journal, 27, 1648–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Tveit, A., Seljeflot, I., Grundvold, I., Abdelnoor, M., Arnesen, H., & Smith, P. (2009). Candesartan, NT-proBNP and recurrence of atrial fibrillation after electrical cardioversion. International Journal of Cardiology, 131, 234–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, T. J., Larson, M. G., Levy, D., Benjamin, E. J., Leip, E. P., Omland, T., et al. (2004). Plasma natriuretic peptide levels and the risk of cardiovascular events and death. The New England Journal of Medicine, 350, 655–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsang, T. S., Gersh, B. J., Appleton, C. P., Tajik, A. J., Barnes, M. E., Bailey, K. R., et al. (2002). Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. Journal of the American College of Cardiology, 40, 1636–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Jaïs, P., Peng, J. T., Shah, D. C., Garrigue, S., Hocini, M., Yamane, T., et al. (2000). Left ventricular diastolic dysfunction in patients with so-called lone atrial fibrillation. Journal of Cardiovascular Electrophysiology, 11, 623–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Jahangir, A., & Murarka, S. (2010). Progression of paroxysmal to persistent atrial fibrillation factors promoting the HATCH score. Journal of the American College of Cardiology, 55, 732–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Dilaveris, P., Batchvarov, V., Gialafos, J., & Malik, M. (1999). Comparison of different methods for manual P wave duration measurement in 12-lead electrocardiograms. Pacing and Clinical Electrophysiology, 22, 1532–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yasushi Akutsu
    • 1
    • 5
  • Kyouichi Kaneko
    • 1
  • Yusuke Kodama
    • 1
    • 3
  • Fumito Miyoshi
    • 1
    • 4
  • Hui-Ling Li
    • 1
    • 5
  • Norikazu Watanabe
    • 1
  • Taku Asano
    • 1
  • Kaoru Tanno
    • 1
  • Jumpei Suyama
    • 2
  • Atsuo Namiki
    • 3
  • Takehiko Gokan
    • 2
  • Youichi Kobayashi
    • 1
  1. 1.Division of Cardiology, Department of MedicineShowa University School of MedicineTokyoJapan
  2. 2.Department of RadiologyShowa University School of MedicineTokyoJapan
  3. 3.Department of CardiologyKanto Rosai HospitalTokyoJapan
  4. 4.Department of CardiologyTakatsu Central HospitalKawasakiJapan
  5. 5.Department of Internal MedicineShowa University Karasuyama HospitalTokyoJapan

Personalised recommendations