Skip to main content
Log in

A combination of P wave electrocardiography and plasma brain natriuretic peptide level for predicting the progression to persistent atrial fibrillation: comparisons of sympathetic activity and left atrial size

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Development of atrial fibrillation (AF) is complexly associated with electrical and structural remodeling and other factors every stage of AF development. We hypothesized that P wave electrocardiography with an elevated brain natriuretic peptide (BNP) level would be associated with the progression to persistence from paroxysmal AF.

Methods

P wave electrocardiography such as a maximum P wave duration (MPWD) and dispersion by 12-leads ECG, heart/mediastinum (H/M) ratio by delayed iodine-123 metaiodobenzylguanidine scintigraphic imaging, left ventricular ejection fraction (LVEF), and left atrial dimension (LAD) by echocardiography, and plasma BNP level were measured to evaluate the electrical and structural properties and sympathetic activity in 71 patients (mean ± standard deviation, age: 67 ± 13 years, 63.4 % males) with idiopathic paroxysmal AF.

Results

Over a 12.9-year follow-up period, AF developed into persistent AF in 30 patients. A wider MPWD (>129 ms) (p = 0.001), wider P wave dispersion (>60 ms) (p = 0.001), LAD enlargement (>40 mm) (p = 0.001), higher BNP level (>72 pg/mL) (p = 0.002), lower H/M ratio (≤2.7) (p = 0.025), and lower LVEF (≤60 %) (p = 0.035) were associated with the progression to persistent AF, and the wide MPWD was an independently powerful predictor of the progression to persistent AF with a hazard ratio (HR) of 5.49 [95 % confidence interval (CI) 2.38–12.7, p < 0.0001] after adjusting for potential confounding variables, such as age and sex. The combination of wide MPWD and elevated BNP level was additive and incremental prognostic power with 13.3 [2.16–13, p < 0.0001].

Conclusion

The wide MPWD with elevated BNP level was associated with the progression to persistent AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S. A., et al. (2012). 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace, 14, 528–606.

    Article  PubMed  Google Scholar 

  2. Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: mechanisms and implications. Circulation: Arrhythmia and Electrophysiology, 1, 62–73.

    Article  Google Scholar 

  3. de Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R. J., et al. (2010). Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. Journal of the American College of Cardiology, 55, 725–31.

    Article  PubMed  Google Scholar 

  4. Anné, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., et al. (2007). Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model. Journal of Molecular and Cellular Cardiology, 43, 148–158.

    Article  PubMed  Google Scholar 

  5. Iwasaki, Y. K., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial fibrillation pathophysiology: implications for management. Circulation, 124, 2264–74.

    Article  PubMed  CAS  Google Scholar 

  6. Todd, D. M., Fynn, S. P., Walden, A. P., Hobbs, W. J., Arya, S., & Garratt, C. J. (2004). Repetitive 4-week periods of atrial electrical remodeling promote stability of atrial fibrillation: time course of a second factor involved in the self-perpetuation of atrial fibrillation. Circulation, 109, 1434–39.

    Article  PubMed  Google Scholar 

  7. Benjamin, E. J., Chen, P. S., Bild, D. E., Mascette, A. M., Albert, C. M., Alonso, A., et al. (2009). Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation, 119, 606–18.

    Article  PubMed  Google Scholar 

  8. Akutsu, Y., Kaneko, K., Kodama, Y., Li, H. L., Suyama, J., Shinozuka, A., et al. (2011). Iodine-123 mIBG imaging for predicting the development of atrial fibrillation. JACC: Cardiovascular Imaging, 4, 78–86.

    Article  PubMed  Google Scholar 

  9. Shibazaki, K., Kimura, K., Fujii, S., Sakai, K., & Iguchi, Y. (2012). Brain natriuretic peptide levels as a predictor for new atrial fibrillation during hospitalization in patients with acute ischemic stroke. The American Journal of Cardiology, 109, 1303–7.

    Article  PubMed  CAS  Google Scholar 

  10. Wazni, O. M., Martin, D. O., Marrouche, N. F., Latif, A. A., Ziada, K., Shaaraoui, M., et al. (2004). Plasma B-type natriuretic peptide levels predict postoperative atrial fibrillation in patients undergoing cardiac surgery. Circulation, 110, 124–7.

    Article  PubMed  CAS  Google Scholar 

  11. Kallergis, E. M., Manios, E. G., Kanoupakis, E. M., Mavrakis, H. E., Goudis, C. A., Maliaraki, N. E., et al. (2010). Effect of sinus rhythm restoration after electrical cardioversion on apelin and brain natriuretic peptide prohormone levels in patients with persistent atrial fibrillation. The American Journal of Cardiology, 105, 90–4.

    Article  PubMed  CAS  Google Scholar 

  12. Perez, M. V., Dewey, F. E., Marcus, R., Ashley, E. A., Al-Ahmad, A. A., Wang, P. J., et al. (2009). Electrocardiographic predictors of atrial fibrillation. American Heart Journal, 158, 622–8.

    Article  PubMed  Google Scholar 

  13. Magnani, J. W., Johnson, V. M., Sullivan, L. M., Gorodeski, E. Z., Schnabel, R. B., Lubitz, S. A., et al. (2011). P wave duration and risk of longitudinal atrial fibrillation in persons ≥60 years old (from the Framingham Heart Study). The American Journal of Cardiology, 107, 917–21.

    Article  PubMed  Google Scholar 

  14. Vassilikos, V., Dakos, G., Chatzizisis, Y. S., Chouvarda, I., Karvounis, C., Maynard, C., et al. (2011). Novel non-invasive P wave analysis for the prediction of paroxysmal atrial fibrillation recurrences in patients without structural heart disease: a prospective pilot study. International Journal of Cardiology, 153, 165–72.

    Article  PubMed  Google Scholar 

  15. Aytemir, K., Amasyali, B., Kose, S., Kilic, A., Abali, G., Oto, A., et al. (2004). Maximum P-wave duration and P-wave dispersion predict recurrence of paroxysmal atrial fibrillation in patients with Wolff-Parkinson-White syndrome after successful radiofrequency catheter ablation. Journal of Interventional Cardiac Electrophysiology, 11, 21–7.

    Article  PubMed  Google Scholar 

  16. Casaclang-Verzosa, G., Gersh, B. J., & Tsang, T. S. (2008). Structural and functional remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation. Journal of the American College of Cardiology, 51, 1–11.

    Article  PubMed  Google Scholar 

  17. Goetze, J. P., Friis-Hansen, L., Rehfeld, J. F., Nilsson, B., & Svendsen, J. H. (2006). Atrial secretion of B-type natriuretic peptide. European Heart Journal, 27, 1648–50.

    Article  PubMed  CAS  Google Scholar 

  18. Tveit, A., Seljeflot, I., Grundvold, I., Abdelnoor, M., Arnesen, H., & Smith, P. (2009). Candesartan, NT-proBNP and recurrence of atrial fibrillation after electrical cardioversion. International Journal of Cardiology, 131, 234–9.

    Article  PubMed  Google Scholar 

  19. Wang, T. J., Larson, M. G., Levy, D., Benjamin, E. J., Leip, E. P., Omland, T., et al. (2004). Plasma natriuretic peptide levels and the risk of cardiovascular events and death. The New England Journal of Medicine, 350, 655–63.

    Article  PubMed  CAS  Google Scholar 

  20. Tsang, T. S., Gersh, B. J., Appleton, C. P., Tajik, A. J., Barnes, M. E., Bailey, K. R., et al. (2002). Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. Journal of the American College of Cardiology, 40, 1636–44.

    Article  PubMed  Google Scholar 

  21. Jaïs, P., Peng, J. T., Shah, D. C., Garrigue, S., Hocini, M., Yamane, T., et al. (2000). Left ventricular diastolic dysfunction in patients with so-called lone atrial fibrillation. Journal of Cardiovascular Electrophysiology, 11, 623–5.

    Article  PubMed  Google Scholar 

  22. Jahangir, A., & Murarka, S. (2010). Progression of paroxysmal to persistent atrial fibrillation factors promoting the HATCH score. Journal of the American College of Cardiology, 55, 732–4.

    Article  PubMed  Google Scholar 

  23. Dilaveris, P., Batchvarov, V., Gialafos, J., & Malik, M. (1999). Comparison of different methods for manual P wave duration measurement in 12-lead electrocardiograms. Pacing and Clinical Electrophysiology, 22, 1532–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Akutsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akutsu, Y., Kaneko, K., Kodama, Y. et al. A combination of P wave electrocardiography and plasma brain natriuretic peptide level for predicting the progression to persistent atrial fibrillation: comparisons of sympathetic activity and left atrial size. J Interv Card Electrophysiol 38, 79–84 (2013). https://doi.org/10.1007/s10840-013-9818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-013-9818-2

Keywords

Navigation