Rapid acquisition of high-resolution electroanatomical maps using a novel multielectrode mapping system

Abstract

Purpose

Conventional electroanatomical mapping systems employ roving catheters with one or a small number of electrodes. Maps acquired using these systems usually contain a small number of points and take a long time to acquire. Use of a multielectrode catheter could facilitate rapid acquisition of higher-resolution maps through simultaneous collection of data from multiple points in space; however, a large multielectrode array could potentially limit catheter maneuverability. The purpose of this study was to test the feasibility of using a novel, multielectrode catheter to map the right atrium and the left ventricle.

Methods

Electroanatomical mapping of the right atrium and the left ventricle during both sinus and paced rhythm were performed in five swine using a conventional mapping catheter and a novel, multielectrode catheter.

Results

Average map acquisition times for the multielectrode catheter (with continuous data collection) ranged from 5.2 to 9.5 min. These maps contained an average of 2,753 to 3,566 points. Manual data collection with the multielectrode catheter was less rapid (average map completion in 11.4 to 18.1 min with an average of 870 to 1,038 points per map), but the conventional catheter was slower still (average map completion in 28.6 to 32.2 min with an average 120 to 148 points per map).

Conclusions

Use of this multielectrode catheter is feasible for mapping the left ventricle as well as the right atrium. The multielectrode catheter facilitates acquisition of electroanatomical data more rapidly than a conventional mapping catheter. This results in shorter map acquisition times and higher-density electroanatomical maps in these chambers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ben-Haim, S. A., Osadchy, D., Schuster, I., Gepstein, L., Hayam, G., & Josephson, M. E. (1996). Nonfluoroscopic, in vivo navigation and mapping technology. Nature Medicine, 2, 1393–1395.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Shpun, S., Gepstein, L., & Ben-Haim, S. A. (1997). Guidance of radiofrequency endocardial ablation with real-time three-dimensional magnetic navigation system. Circulation, 96, 2016–2021.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Gepstein, L., Hayam, G., & Ben-Haim, S. A. (1997). A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: in vitro and in vivo accuracy results. Circulation, 95, 1611–1622.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Gepstein, L., & Evans, S. J. (1998). Electroanatomical mapping of the heart: basic concepts and implications for the treatment of cardiac arrhythmias. Pacing and Clinical Electrophysiology, 21, 1268–1278.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Smeets, J. L., Ben-Haim, S. A., Rodriguez, L. M., Timmermans, C., & Wellens, H. J. (1998). New method for nonfluoroscopic endocardial mapping in humans: accuracy assessment and first clinical results. Circulation, 97, 2426–2432.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Gepstein, L., Wolf, T., Hayam, G., & Ben-Haim, S. A. (2001). Accurate linear radiofrequency lesions guided by a nonfluoroscopic electroanatomic mapping method during atrial fibrillation. Pacing and Clinical Electrophysiology, 24, 1672–1678.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Boulos, M., & Gepstein, L. (2004). Electroanatomical mapping and radiofrequency ablation of an accessory pathway associated with a large aneurysm of the coronary sinus. Europace, 6, 608–612.

    PubMed  Article  Google Scholar 

  8. 8.

    Boulos, M., Lashevsky, I., & Gepstein, L. (2005). Usefulness of electroanatomical mapping to differentiate between right ventricular outflow tract tachycardia and arrhythmogenic right ventricular dysplasia. The American Journal of Cardiology, 95, 935–940.

    PubMed  Article  Google Scholar 

  9. 9.

    Corrado, D., Basso, C., Leoni, L., Tokajuk, B., Bauce, B., Frigo, G., et al. (2005). Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation, 111, 3042–3050.

    PubMed  Article  Google Scholar 

  10. 10.

    Corrado, D., Basso, C., Leoni, L., Tokajuk, B., Turrini, P., Bauce, B., et al. (2008). Three-dimensional electroanatomical voltage mapping and histologic evaluation of myocardial substrate in right ventricular outflow tract tachycardia. Journal of the American College of Cardiology, 51, 731–739.

    PubMed  Article  Google Scholar 

  11. 11.

    Packer, D. L. (2005). Three-dimensional mapping in interventional electrophysiology: techniques and technology. Journal of Cardiovascular Electrophysiology, 16, 1110–1116.

    PubMed  Article  Google Scholar 

  12. 12.

    Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., et al. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43, 2044–2053.

    PubMed  Article  Google Scholar 

  13. 13.

    Koa-Wing, M., Ho, S. Y., Kojodjojo, P., Peters, N. S., Davies, D. W., & Kanagaratnam, P. (2007). Radiofrequency ablation of infarct scar-related ventricular tachycardia: correlation of electroanatomical data with post-mortem histology. Journal of Cardiovascular Electrophysiology, 18, 1330–1333.

    PubMed  Article  Google Scholar 

  14. 14.

    Marchlinski, F., Zado, E., Dixit, S., Gerstenfeld, E., Callans, D., Hsia, H., et al. (2004). Electroanatomic substrate and outcome of catheter ablative therapy for ventricular tachycardia in setting of right ventricular cardiomyopathy. Circulation, 110, 2293–2298.

    PubMed  Article  Google Scholar 

  15. 15.

    Patel, A. M., d’Avila, A., Neuzil, P., Kim, S. J., Mela, T., Singh, J. P., et al. (2008). Atrial tachycardia after ablation of persistent atrial fibrillation: identification of the critical isthmus with a combination of multielectrode activation mapping and targeted entrainment mapping. Circulation. Arrhythmia and Electrophysiology, 1, 14–22.

    PubMed  Article  Google Scholar 

  16. 16.

    Dello Russo, A., Pelargonio, G., & Casella, M. (2008). New high-density mapping catheter: helpful tool to assess complete pulmonary veins isolation. Europace, 10, 118–119.

    PubMed  Article  Google Scholar 

  17. 17.

    Sanders, P., Hocini, M., Jaïs, P., Hsu, L. F., Takahashi, Y., Rotter, M., et al. (2005). Characterization of focal atrial tachycardia using high-density mapping. Journal of the American College of Cardiology, 46, 2088–2099.

    PubMed  Article  Google Scholar 

  18. 18.

    Beinart, R., Perna, F., Danik, S., Barrett, C. D., Heist, E. K., Ruskin, J., et al. (2010). Initial experience with a multielectrode catheter equipped with the single-axis sensor technology for high-density electroanatomical mapping in a Swine model. Journal of Cardiovascular Electrophysiology, 21, 1403–1407.

    PubMed  Article  Google Scholar 

  19. 19.

    Higa, S., Tai, C. T., Lin, Y. J., Liu, T. Y., Lee, P. C., Huang, J. L., et al. (2004). Focal atrial tachycardia: new insight from noncontact mapping and catheter ablation. Circulation, 109, 84–91.

    PubMed  Article  Google Scholar 

  20. 20.

    Rostock, T., Rotter, M., Sanders, P., Takahashi, Y., Jaïs, P., Hocini, M., et al. (2006). High-density activation mapping of fractionated electrograms in the atria of patients with paroxysmal atrial fibrillation. Heart Rhythm, 3, 27–34.

    PubMed  Article  Google Scholar 

  21. 21.

    Reddy, V. Y., Morales, G., Ahmed, H., Neuzil, P., Dukkipati, S., Kim, S., et al. (2010). Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm, 7, 1644–1653.

    PubMed  Article  Google Scholar 

  22. 22.

    Nakagawa, H., Ikeda, A., Sharma, T., Lazzara, R., & Jackman, W. M. (2012). Rapid high resolution electroanatomic mapping. Circulation. Arrhythmia and Electrophysiology, 5, 417–424.

    PubMed  Article  Google Scholar 

  23. 23.

    Zeger, S. L., & Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121–130.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Marchlinski, F. E., Callans, D. J., Gottlieb, C. D., & Zado, E. (2000). Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 101, 1288–1296.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Saksena, S., Skadsberg, N. D., Rao, H. B., & Filipecki, A. (2005). Biatrial and three-dimensional mapping of spontaneous atrial arrhythmias in patients with refractory atrial fibrillation. Journal of Cardiovascular Electrophysiology, 16, 494–504.

    PubMed  Article  Google Scholar 

  26. 26.

    Solheim, E., Off, M. K., Hoff, P. I., Ohm, O. J., & Chen, J. (2009). Electroanatomical mapping and radiofrequency catheter ablation of atrial tachycardia originating from the donor heart after orthotopic heart transplantation in a child. Journal of Interventional Cardiac Electrophysiology, 25, 73–77.

    PubMed  Article  Google Scholar 

  27. 27.

    Verma, A., Kilicaslan, F., Schweikert, R. A., Tomassoni, G., Rossillo, A., Marrouche, N. F., et al. (2005). Short- and long-term success of substrate-based mapping and ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia. Circulation, 111, 3209–3216.

    PubMed  Article  Google Scholar 

  28. 28.

    Avella, A., d’Amati, G., Pappalardo, A., Re, F., Silenzi, P., Laurenzi, F., et al. (2008). Diagnostic value of endomyocardial biopsy guided by electroanatomic voltage mapping in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Journal of Cardiovascular Electrophysiology, 19, 1127–1134.

    PubMed  Article  Google Scholar 

  29. 29.

    Pieroni, M., Dello Russo, A., Marzo, F., Pelargonio, G., Casella, M., Bellocci, F., et al. (2009). High prevalence of myocarditis mimicking arrhythmogenic right ventricular cardiomyopathy differential diagnosis by electroanatomic mapping-guided endomyocardial biopsy. Journal of the American College of Cardiology, 53, 681–689.

    PubMed  Article  Google Scholar 

  30. 30.

    Koruth, J. S., Heist, E. K., Danik, S., Barrett, C. D., Kabra, R., Blendea, D., et al. (2011). Accuracy of left atrial anatomical maps acquired with a multielectrode catheter during catheter ablation for atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 32, 45–51.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

L.M.P. received research support from the Deane Institute for Integrative Research Atrial Fibrillation and Stroke at the Massachusetts General Hospital. Statistical analyses were performed with support from Harvard Catalyst/The Harvard Clinical and Translational Science Center (NIH award No. UL1 RR 025758 and financial contributions from Harvard University and its affiliated academic health care centers).

Financial disclosures

Leon M. Ptaszek, M.D., Ph.D., Fadi Chalhoub, M.D., Francesco Perna, M.D., Roy Beinart, M.D., Conor D. Barrett, M.D., and Stephan B. Danik, M.D. have no financial disclosures to declare. E.Kevin Heist, M.D., Ph.D. declares no financial support but with potential conflicts of interest from the following: Boston Scientific (research grant and honoraria), Biotronik (research grant and honoraria), Boston Scientific (research grant, consultant, and honoraria), Medtronic (honoraria), Sanofi (consultant), Sorin (consultant and honoraria), and St. Jude Medical (research grant, consultant, and honoraria). Jeremy N. Ruskin, M.D. declares no financial support but with potential conflicts of interest from the following: Atricure (consultant), Biosense Webster (consultant and fellowship support), Boston Scientific (fellowship support), CardioFocus (Clinical Oversight Committee—no compensation), CardioInsight (Scientific Advisory Board), CryoCath (Scientific Steering Committee—no compensation), Medtronic (consultant and fellowship support), St. Jude Medical (fellowship support), and Third Rock Ventures (consultant). Moussa Mansour, M.D. declares the following disclosures: Biosense Webster (consultant and research grant), Boston Scientific (consultant and research grant), St. Jude Medical (consultant and research grant), Medtronic (consultant), MC 10 (research grant), Voyage Medical (research grant), Rhythmia Medical (research grant), and CardioFocus (research grant).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moussa Mansour.

Additional information

Editorial Commentary

In this study, the authors address an important clinical issue given the importance of an accurate and rapid characterization of cardiac anatomy and electrical activation for subsequent ablation. The goal is to investigate whether or not it is feasible to map the right atrium and left ventricle using a novel multielectrode catheter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ptaszek, L.M., Chalhoub, F., Perna, F. et al. Rapid acquisition of high-resolution electroanatomical maps using a novel multielectrode mapping system. J Interv Card Electrophysiol 36, 233–242 (2013). https://doi.org/10.1007/s10840-012-9733-y

Download citation

Keywords

  • Animal studies
  • Biomedical engineering
  • Electroanatomical mapping
  • Catheter ablation