Personalized medicine and the genotype–phenotype dilemma

  • Dan M. Roden

Important human phenotypes like height or facial appearance run in families—that has been known for millennia. Systematic studies of the way in which crossing pea plants resulted in changes in important pea plant phenotypes such as flower color or leaf number were defined in the mid-nineteenth century by Mendel [1] and the chemical basis for “inherited inborn errors of metabolism” by Garrod [2] at the turn of the twentieth century. Thus, some of the fundamental and familiar rules that we accept in a contemporary understanding of human genetics were laid down decades ago. However, an understanding of the mechanisms whereby genetic information is transmitted from generation to generation and how this information modulates important physiologic or disease susceptibility traits has been more recent. The fundamental discovery was the double-helix structure of DNA, which immediately led to the inference that DNA replication might replicate itself [3]. The last 50 years has seen the...


Phenotypes Genotypes DNA 



This study was supported in part by grants from the US National Institutes of Health (U01 HL65962, RC2 GM092618, U01 HG04603).

Conflicts of interest

Dr. Roden is a consultant to Sanofi-Aventis, one of the sponsors of the meeting at which this work was presented. Dr. Roden retained full control of this manuscript throughout its generation; as this is a review, there are no primary data.


  1. 1.
    Mendel, G. (1866). Experiments in plant hybridization. Verhandlungen des naturforschenden Vereines in Brunn, bd IV fur das Jahr 1865, Abhandlungen, pp 3–47.Google Scholar
  2. 2.
    Garrod, A. E. (1923). Inborn errors of metabolism (2nd ed.). Oxford: Oxford University Press.Google Scholar
  3. 3.
    Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171, 737–738.PubMedCrossRefGoogle Scholar
  4. 4.
    Jervell, A., & Lange-Nielsen, F. (1957). Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. American Heart Journal, 54, 59–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Romano, C., Gemme, G., & Pongiglione, R. (1963). Aritmie cardiache rare in età pediatrica. Clinical Pediatrics, 45, 656–683.Google Scholar
  6. 6.
    Ward, O. C. (1964). A new familial cardiac syndrome in children. J Irish Med Assoc, 54, 103–106.Google Scholar
  7. 7.
    Priori, S. G., Schwartz, P. J., Napolitano, C., Bloise, R., Ronchetti, E., Grillo, M., et al. (2003). Risk stratification in the long-QT syndrome. The New England Journal of Medicine, 348, 1866–1874.PubMedCrossRefGoogle Scholar
  8. 8.
    Priori, S. G., Napolitano, C., & Schwartz, P. J. (1999). Low penetrance in the long-QT syndrome: Clinical impact. Circulation, 99, 529–533.PubMedGoogle Scholar
  9. 9.
    Collins, F. S., Drumm, M. L., Cole, J. L., Lockwood, W. K., Vande Woude, G. F., & Iannuzzi, M. C. (1987). Construction of a general human chromosome jumping library, with application to cystic fibrosis. Science, 235, 1046–1049.PubMedCrossRefGoogle Scholar
  10. 10.
    Geisterfer-Lowrance, A. A., Kass, S., Tanigawa, G., Vosberg, H. P., McKenna, W., Seidman, C. E., et al. (1990). A molecular basis for familial hypertrophic cardiomyopathy: A beta cardiac myosin heavy chain gene missense mutation. Cell, 62, 999–1006.PubMedCrossRefGoogle Scholar
  11. 11.
    The International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437, 1299–1320.CrossRefGoogle Scholar
  12. 12.
    The International HapMap Consortium. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851–861.CrossRefGoogle Scholar
  13. 13.
    Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. The New England Journal of Medicine, 363, 166–176.PubMedCrossRefGoogle Scholar
  14. 14.
    Milan, D. J., Lubitz, S. A., Kaab, S., & Ellinor, P. T. (2010). Genome-wide association studies in cardiac electrophysiology: Recent discoveries and implications for clinical practice. Heart Rhythm, 7, 1141–1148.PubMedCrossRefGoogle Scholar
  15. 15.
    Arking, D. E., Pfeufer, A., Post, W., Kao, W. H., Newton-Cheh, C., Ikeda, M., et al. (2006). A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genetics, 38, 644–651.PubMedCrossRefGoogle Scholar
  16. 16.
    Pfeufer, A., Sanna, S., Arking, D. E., Muller, M., Gateva, V., Fuchsberger, C., et al. (2009). Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nature Genetics, 41, 407–414.PubMedCrossRefGoogle Scholar
  17. 17.
    Newton-Cheh, C., Eijgelsheim, M., Rice, K. M., de Bakker, P. I. W., Yin, X., Estrada, K., et al. (2009). Common variants at ten loci influence QT interval duration in the QTGEN Study. Nature Genetics, 41, 399–406.PubMedCrossRefGoogle Scholar
  18. 18.
    Kao, W. H., Arking, D. E., Post, W., Rea, T. D., Sotoodehnia, N., Prineas, R. J., et al. (2009). Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation, 119, 940–951.PubMedCrossRefGoogle Scholar
  19. 19.
    Crotti, L., Monti, M. C., Insolia, R., Peljto, A., Goosen, A., Brink, P. A., et al. (2009). NOS1AP is a genetic modifier of the long-QT syndrome. Circulation, 120, 1657–1663.PubMedCrossRefGoogle Scholar
  20. 20.
    Tomas, M., Napolitano, C., De, G. L., Bloise, R., Subirana, I., Malovini, A., et al. (2010). Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. Journal of the American College of Cardiology, 55, 2745–2752.PubMedCrossRefGoogle Scholar
  21. 21.
    Milan, D. J., Kim, A. M., Winterfield, J. R., Jones, I. L., Pfeufer, A., Sanna, S., et al. (2009). A drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization. Circulation, 120, 553–559.PubMedCrossRefGoogle Scholar
  22. 22.
    Gudbjartsson, D. F., Arnar, D. O., Helgadottir, A., Gretarsdottir, S., Holm, H., Sigurdsson, A., et al. (2007). Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature, 448, 353–357.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaab, S., Darbar, D., van Noord, C., Dupuis, J., Pfeufer, A., Newton-Cheh, C., et al. (2009). Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. European Heart Journal, 30, 813–819.PubMedCrossRefGoogle Scholar
  24. 24.
    Mommersteeg, M. T. M., Brown, N. A., Prall, O. W. J., de Gier-de Vries, C., Harvey, R. P., Moorman, A. F. M., et al. (2007). Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circulation Research, 101, 902–909.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang, J., Klysik, E., Sood, S., Johnson, R. L., Wehrens, X. H., & Martin, J. F. (2010). Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proceedings of the National Academy of Sciences of the United States of America, 107, 9753–9758.PubMedCrossRefGoogle Scholar
  26. 26.
    Gudbjartsson, D. F., Holm, H., Gretarsdottir, S., Thorleifsson, G., Walters, G. B., Thorgeirsson, G., et al. (2009). A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nature Genetics, 41, 876–878.PubMedCrossRefGoogle Scholar
  27. 27.
    Ellinor, P. T., Lunetta, K. L., Glazer, N. L., Pfeufer, A., Alonso, A., Chung, M. K., et al. (2010). Common variants in KCNN3 are associated with lone atrial fibrillation. Nature Genetics, 42, 240–244.PubMedCrossRefGoogle Scholar
  28. 28.
    Body, S. C., Collard, C. D., Shernan, S. K., Fox, A. A., Liu, K. Y., Ritchie, M. D., et al. (2009). Variation in the 4q25 chromosomal locus predicts atrial fibrillation after coronary artery bypass graft surgery. Circ Cardiovasc Genet, 2, 499–506.PubMedCrossRefGoogle Scholar
  29. 29.
    Husser, D., Adams, V., Piorkowski, C., Hindricks, G., & Bollmann, A. (2010). Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. Journal of the American College of Cardiology, 55, 747–753.PubMedCrossRefGoogle Scholar
  30. 30.
    Rowan, S. B., Estrada, J. C., Stubblefield, T., Kucera, G., Carter, S., Roden, D. M., et al. (2009). A single nucleotide polymorphism at 4q25 associated with atrial fibrillation modulates symptomatic response to antiarrhythmic drug therapy. Heart Rhythm, 6, PO04-7.Google Scholar
  31. 31.
    Gretarsdottir, S., Thorleifsson, G., Manolescu, A., Styrkarsdottir, U., Helgadottir, A., Gschwendtner, A., et al. (2008). Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Annals of Neurology, 64, 402–409.PubMedCrossRefGoogle Scholar
  32. 32.
    Lubitz, S. A., Sinner, M. F., Lunetta, K. L., Makino, S., Pfeufer, A., Rahman, R., et al. (2010). Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation, 122, 976–984.PubMedCrossRefGoogle Scholar
  33. 33.
    Bezzina, C. R., Pazoki, R., Bardai, A., Marsman, R. F., de Jong, J. S., Blom, M. T., et al. (2010). Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nature Genetics, 42, 688–691.PubMedCrossRefGoogle Scholar
  34. 34.
    Holm, H., Gudbjartsson, D. F., Arnar, D. O., Thorleifsson, G., Thorgeirsson, G., Stefansdottir, H., et al. (2010). Several common variants modulate heart rate, PR interval and QRS duration. Nature Genetics, 42, 117–122.PubMedCrossRefGoogle Scholar
  35. 35.
    Chambers, J. C., Zhao, J., Terracciano, C. M. N., Bezzina, C. R., Zhang, W., Kaba, R., et al. (2010). Genetic variation in SCN10A influences cardiac conduction. Nature Genetics, 42, 149–152.PubMedCrossRefGoogle Scholar
  36. 36.
    Pfeufer, A., van Noord, C., Marciante, K. D., Arking, D. E., Larson, M. G., Smith, A. V., et al. (2010). Genome-wide association study of PR interval. Nature Genetics, 42, 153–159.PubMedCrossRefGoogle Scholar
  37. 37.
    Denny, J. C., Ritchie, M. D., Crawford, D. C., Schildcrout, J. S., Ramirez, A. H., Pulley, J. M., et al. (2010). Identification of genomic predictors of atrioventricular conduction: Using electronic medical records as a tool for genome science. Circulation, 122, 2016–2021.PubMedCrossRefGoogle Scholar
  38. 38.
    Sotoodehnia, N., Isaacs, A., de Bakker, P. I., Dorr, M., Newton-Cheh, C., Nolte, I. M., et al. (2010). Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nature Genetics, 42, 1068–1076.PubMedCrossRefGoogle Scholar
  39. 39.
    Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753.PubMedCrossRefGoogle Scholar
  40. 40.
    Shuldiner, A. R., O'Connell, J. R., Bliden, K. P., Gandhi, A., Ryan, K., Horenstein, R. B., et al. (2009). Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. Journal of the American Medical Association, 302, 849–857.PubMedCrossRefGoogle Scholar
  41. 41.
    Veenstra, D. L., You, J. H., Rieder, M. J., Farin, F. M., Wilkerson, H. W., Blough, D. K., et al. (2005). Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenetics and Genomics, 15, 687–691.PubMedCrossRefGoogle Scholar
  42. 42.
    Cooper, G. M., Johnson, J. A., Langaee, T. Y., Feng, H., Stanaway, I. B., Schwarz, U. I., et al. (2008). A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood, 112, 1022–1027.PubMedCrossRefGoogle Scholar
  43. 43.
    Takeuchi, F., McGinnis, R., Bourgeois, S., Barnes, C., Eriksson, N., Soranzo, N., et al. (2009). A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genetics, 5, e1000433.PubMedCrossRefGoogle Scholar
  44. 44.
    Roden, D. M., & Brown, N. J. (2001). Preprescription genotyping: not yet ready for prime time, but getting there. Circulation, 103, 1608–1610.PubMedGoogle Scholar
  45. 45.
    Collins, F. (2009). Opportunities and challenges for the NIH—an interview with Francis Collins. Interview by Robert Steinbrook. The New England Journal of Medicine, 361, 1321–1323.PubMedCrossRefGoogle Scholar
  46. 46.
    Pepe, M. S., Janes, H., Longton, G., Leisenring, W., & Newcomb, P. (2004). Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. American Journal of Epidemiology, 159, 882–890.PubMedCrossRefGoogle Scholar
  47. 47.
    Darbar, D., Herron, K. J., Ballew, J. D., Jahangir, A., Gersh, B. J., Shen, W. K., et al. (2003). Familial atrial fibrillation is a genetically heterogeneous disorder. Journal of the American College of Cardiology, 41, 2185–2192.PubMedCrossRefGoogle Scholar
  48. 48.
    Ellinor, P. T., Yoerger, D. M., Ruskin, J. N., & Macrae, C. A. (2005). Familial aggregation in lone atrial fibrillation. Human Genetics, 118, 179–184.PubMedCrossRefGoogle Scholar
  49. 49.
    Friedlander, Y., Siscovick, D. S., Weinmann, S., Austin, M. A., Psaty, B. M., Lemaitre, R. N., et al. (1998). Family history as a risk factor for primary cardiac arrest. Circulation, 97, 155–160.PubMedGoogle Scholar
  50. 50.
    Jouven, X., Desnos, M., Guerot, C., & Ducimetiere, P. (1999). Predicting sudden death in the population: The Paris Prospective Study I. Circulation, 99, 1978–1983.PubMedGoogle Scholar
  51. 51.
    Dekker, L. R. C., Bezzina, C. R., Henriques, J. P. S., Tanck, M. W., Koch, K. T., Alings, M. W., et al. (2006). Familial sudden death is an important risk factor for primary ventricular fibrillation: A case–control study in acute myocardial infarction patients. Circulation, 114, 1140–1145.PubMedCrossRefGoogle Scholar
  52. 52.
    Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., et al. (2009). Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461, 272–276.PubMedCrossRefGoogle Scholar
  53. 53.
    Choi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., Zumbo, P., et al. (2009). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 19096–19101.PubMedCrossRefGoogle Scholar
  54. 54.
    Lupski, J. R., Reid, J. G., Gonzaga-Jauregui, C., Rio, D. D., Chen, D. C., Nazareth, L., et al. (2010). Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. The New England Journal of Medicine, 362, 1181–1191.PubMedCrossRefGoogle Scholar
  55. 55.
    Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., et al. (2010). Clinical assessment incorporating a personal genome. Lancet, 375, 1525–1535.PubMedCrossRefGoogle Scholar
  56. 56.
    Kohane, I. S., Masys, D. R., & Altman, R. B. (2006). The incidentalome: A threat to genomic medicine. Journal of the American Medical Association, 296, 212–215.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Medicine and PharmacologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations