Regenerative therapies in electrophysiology and pacing: introducing the next steps

  • Gerard J.J. Boink
  • Michael R. Rosen


The morbidity and mortality of cardiac arrhythmias are major international health concerns. Drug and device therapies have made inroads but alternative approaches are still being sought. For example, gene and cell therapies have been explored for treatment of brady- and tachyarrhythmias, and proof of concept has been obtained for both biological pacing in the setting of heart block and gene therapy for ventricular tachycardias. This paper reviews the state of the art developments with regard to gene and cell therapies for cardiac arrhythmias and discusses next steps.


Gene therapy Cell therapy Arrhythmias 



Certain experiments referred to were supported by USPHS-NHLBI grants Hl-28968, HL-67101, and HL-094410 and NYSTEM contract number CO24344. Gerard Boink received a research grant from the Netherlands Foundation for Cardiovascular Research (NFCVR) and fellowship grants from the Dr. Saal van Zwanenberg foundation and the Interuniversity Cardiology Institute of the Netherlands (ICIN).


  1. 1.
    Greener, I., Donahue, J.K. (2010). Gene therapy strategies for cardiac electrical dysfunction. Journal of Molecular and Cellular Cardiology (in press).Google Scholar
  2. 2.
    Rosen, M. R., Danilo, P., Jr., & Robinson, R. B. (2009). Gene and cell therapy for life-threatening cardiac arrhythmias. Dialogues in Cardiovascular Medicine, 14(1), 44–51.PubMedGoogle Scholar
  3. 3.
    Cho, H. C., & Marbán, E. (2010). Biological therapies for cardiac arrhythmias: Can genes and cells replace drugs and devices? Circulation Research, 106(4), 674–685.PubMedCrossRefGoogle Scholar
  4. 4.
    Dimmeler, S., & Zeiher, A. M. (2009). Cell therapy of acute myocardial infarction: Open questions. Cardiology, 113(3), 155–160.PubMedCrossRefGoogle Scholar
  5. 5.
    Gupta, R., & Losordo, D. W. (2010). Challenges in the translation of cardiovascular cell therapy. Journal of Nuclear Medicine, 51(Suppl 1), 122S–127S.PubMedCrossRefGoogle Scholar
  6. 6.
    Wollert, K. C., & Drexler, H. (2010). Cell therapy for the treatment of coronary heart disease: A critical appraisal. Nature Reviews Cardiology, 7(4), 204–215.PubMedCrossRefGoogle Scholar
  7. 7.
    Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167(10), 989–997.PubMedCrossRefGoogle Scholar
  8. 8.
    Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54(24), 2277–2286.PubMedCrossRefGoogle Scholar
  9. 9.
    Hatzistergos, K.E., Quevedo, H., Oskouei, B.N., Hu, Q., Feigenbaum, G.S., Margitich, I.S., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research (in press)Google Scholar
  10. 10.
    Kupatt, C., Hinkel, R., Lamparter, M., von Bruhl, M. L., Pohl, T., Horstkotte, J., et al. (2005). Retroinfusion of embryonic endothelial progenitor cells attenuates ischemia-reperfusion injury in pigs: Role of phosphatidylinositol 3-kinase/AKT kinase. Circulation, 112(9 Suppl), I117–I122.PubMedGoogle Scholar
  11. 11.
    Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11(4), 367–368.PubMedCrossRefGoogle Scholar
  12. 12.
    Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98(11), 1414–1421.PubMedCrossRefGoogle Scholar
  13. 13.
    Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., Dzau, V.J. (2010). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology (in press).Google Scholar
  14. 14.
    Hinkel, R., El-Aouni, C., Olson, T., Horstkotte, J., Mayer, S., Muller, S., et al. (2008). Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation, 117(17), 2232–2240.PubMedCrossRefGoogle Scholar
  15. 15.
    Morishita, Y., Poirier, R. A., & Rohner, R. F. (1981). Sinoatrial node transplantation in the dog. Vascular and Endovascular Surgery, 15, 388–393.CrossRefGoogle Scholar
  16. 16.
    Edelberg, J. M., Aird, W. C., & Rosenberg, R. D. (1998). Enhancement of murine cardiac chronotropy by the molecular transfer of the human β2-adrenergic receptor cDNA. The Journal of Clinical Investigation, 101(2), 337–343.PubMedCrossRefGoogle Scholar
  17. 17.
    Edelberg, J. M., Huang, D. T., Josephson, M. E., & Rosenberg, R. D. (2001). Molecular enhancement of porcine cardiac chronotropy. Heart, 86(5), 559–562.PubMedCrossRefGoogle Scholar
  18. 18.
    Ruhparwar, A., Tebbenjohanns, J., Niehaus, M., Mengel, M., Irtel, T., Kofidis, T., et al. (2002). Transplanted fetal cardiomyocytes as cardiac pacemaker. European Journal of Cardiothoracic Surgery, 21(5), 853–857.PubMedCrossRefGoogle Scholar
  19. 19.
    Miake, J., Marbán, E., & Nuss, H. B. (2002). Biological pacemaker created by gene transfer. Nature, 419(6903), 132–133.PubMedCrossRefGoogle Scholar
  20. 20.
    Boink, G. J. J., Verkerk, A. O., van Amersfoorth, S. C., Tasseron, S. J., van der, R. R., Bakker, D., et al. (2008). Engineering physiologically controlled pacemaker cells with lentiviral HCN4 gene transfer. Journal of Gene Medicine, 10(5), 487–497.PubMedCrossRefGoogle Scholar
  21. 21.
    Qu, J., Plotnikov, A. N., Danilo, P., Jr., Shlapakova, I., Cohen, I. S., Robinson, R. B., et al. (2003). Expression and function of a biological pacemaker in canine heart. Circulation, 107(8), 1106–1109.PubMedCrossRefGoogle Scholar
  22. 22.
    Tse, H. F., Xue, T., Lau, C. P., Siu, C. W., Wang, K., Zhang, Q. Y., et al. (2006). Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation, 114(10), 1000–1011.PubMedCrossRefGoogle Scholar
  23. 23.
    Plotnikov, A. N., Sosunov, E. A., Qu, J., Shlapakova, I. N., Anyukhovsky, E. P., Liu, L., et al. (2004). Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation, 109(4), 506–512.PubMedCrossRefGoogle Scholar
  24. 24.
    Bucchi, A., Plotnikov, A. N., Shlapakova, I., Danilo, P., Jr., Kryukova, Y., Qu, J., et al. (2006). Wild-type and mutant HCN channels in a tandem biological–electronic cardiac pacemaker. Circulation, 114(10), 992–999.PubMedCrossRefGoogle Scholar
  25. 25.
    Plotnikov, A. N., Bucchi, A., Shlapakova, I., Danilo, P., Jr., Brink, P. R., Robinson, R. B., et al. (2008). HCN212-channel biological pacemakers manifesting ventricular tachyarrhythmias are responsive to treatment with I(f) blockade. Heart Rhythm, 5(2), 282–288.PubMedCrossRefGoogle Scholar
  26. 26.
    Kashiwakura, Y., Cho, H. C., Barth, A. S., Azene, E., & Marbán, E. (2006). Gene transfer of a synthetic pacemaker channel into the heart: A novel strategy for biological pacing. Circulation, 114(16), 1682–1686.PubMedCrossRefGoogle Scholar
  27. 27.
    Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22(10), 1282–1289.PubMedCrossRefGoogle Scholar
  28. 28.
    Xue, T., Cho, H. C., Akar, F. G., Tsang, S. Y., Jones, S. P., Marbán, E., et al. (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: Insights into the development of cell-based pacemakers. Circulation, 111(1), 11–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Potapova, I., Plotnikov, A., Lu, Z., Danilo, P., Jr., Valiunas, V., Qu, J., et al. (2004). Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circulation Research, 94(7), 952–959.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosen, M. R. (2006). Are stem cells drugs? The regulation of stem cell research and development. Circulation, 114(18), 1992–2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Zimmet, J. M., & Hare, J. M. (2005). Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Research in Cardiology, 100(6), 471–481.PubMedCrossRefGoogle Scholar
  32. 32.
    Plotnikov, A. N., Shlapakova, I., Szabolcs, M. J., Danilo, P., Jr., Lorell, B. H., Potapova, I. A., et al. (2007). Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation, 116(7), 706–713.PubMedCrossRefGoogle Scholar
  33. 33.
    Valiunas, V., Kanaporis, G., Valiuniene, L., Gordon, C., Wang, H. Z., Li, L., et al. (2009). Coupling an HCN2-expressing cell to a myocyte creates a two-cell pacing unit. The Journal of Physiology, 587(Pt 21), 5211–5226.PubMedCrossRefGoogle Scholar
  34. 34.
    Cho, H. C., Kashiwakura, Y., & Marbán, E. (2007). Creation of a biological pacemaker by cell fusion. Circulation Research, 100(8), 1112–1115.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41.PubMedCrossRefGoogle Scholar
  36. 36.
    Novak, A., Shtrichman, R., Germanguz, I., Segev, H., Zeevi-Levin, N., Fishman, B., et al. (2010). Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicle, using single excisable lentivirus. Cellular Reprogramming, (in press).Google Scholar
  37. 37.
    Choi, Y. H., Stamm, C., Hammer, P. E., Kwaku, K. F., Marler, J. J., Friehs, I., et al. (2006). Cardiac conduction through engineered tissue. The American Journal of Pathology, 169(1), 72–85.PubMedCrossRefGoogle Scholar
  38. 38.
    McSpadden, L. C., Kirkton, R. D., & Bursac, N. (2009). Cell therapies for arrhythmias: Genetically engineered coupling determines the effect on anisotropic cardiac conduction. Circulation, 120(20), S765–S766.Google Scholar
  39. 39.
    Yokokawa, M., Ohnishi, S., Ishibashi-Ueda, H., Obata, H., Otani, K., Miyahara, Y., et al. (2008). Transplantation of mesenchymal stem cells improves atrioventricular conduction in a rat model of complete atrioventricular block. Cell Transplantation, 17(10–11), 1145–1155.PubMedCrossRefGoogle Scholar
  40. 40.
    Members of the Sicilian Gambit. (2001). New approaches to antiarrhythmic therapy, Part I: Emerging therapeutic applications of the cell biology of cardiac arrhythmias. Circulation, 104(23), 2865–2873.CrossRefGoogle Scholar
  41. 41.
    Aliot, E. M., Stevenson, W. G., Almendral-Garrote, J. M., Bogun, F., Calkins, C. H., Delacretaz, E., et al. (2009). EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart Rhythm, 6(6), 886–933.PubMedCrossRefGoogle Scholar
  42. 42.
    Camm, A.J., Kirchhof, P., Lip, G.Y., Schotten, U., Savelieva, I., Ernst, S., et al. (2010). Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). European Heart Journal, Epublished ahead of print.Google Scholar
  43. 43.
    Fuster, V., Ryden, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., et al. (2006). ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). Journal of the American College of Cardiology, 48(4), 854–906.PubMedCrossRefGoogle Scholar
  44. 44.
    Hohnloser, S. H., Kuck, K. H., Dorian, P., Roberts, R. S., Hampton, J. R., Hatala, R., et al. (2004). Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. The New England Journal of Medicine, 351(24), 2481–2488.PubMedCrossRefGoogle Scholar
  45. 45.
    Raviele, A., Bongiorni, M. G., Brignole, M., Cappato, R., Capucci, A., Gaita, F., et al. (2005). Early EPS/ICD strategy in survivors of acute myocardial infarction with severe left ventricular dysfunction on optimal beta-blocker treatment. The BEta blocker STrategy plus ICD trial. Europace, 7(4), 327–337.PubMedCrossRefGoogle Scholar
  46. 46.
    Bunch, T. J., Mahapatra, S., Bruce, G. K., Johnson, S. B., Miller, D. V., Horne, B. D., et al. (2006). Impact of transforming growth factor-β1 on atrioventricular node conduction modification by injected autologous fibroblasts in the canine heart. Circulation, 113(21), 2485–2494.PubMedCrossRefGoogle Scholar
  47. 47.
    Bauer, A., McDonald, A. D., Nasir, K., Peller, L., Rade, J. J., Miller, J. M., et al. (2004). Inhibitory G protein overexpression provides physiologically relevant heart rate control in persistent atrial fibrillation. Circulation, 110(19), 3115–3120.PubMedCrossRefGoogle Scholar
  48. 48.
    Donahue, J. K., Heldman, A. W., Fraser, H., McDonald, A. D., Miller, J. M., Rade, J. J., et al. (2000). Focal modification of electrical conduction in the heart by viral gene transfer. Nature Medicine, 6(12), 1395–1398.PubMedCrossRefGoogle Scholar
  49. 49.
    Murata, M., Cingolani, E., McDonald, A. D., Donahue, J. K., & Marbán, E. (2004). Creation of a genetic calcium channel blocker by targeted gem gene transfer in the heart. Circulation Research, 95(4), 398–405.PubMedCrossRefGoogle Scholar
  50. 50.
    Burton, D. Y., Song, C., Fishbein, I., Hazelwood, S., Li, Q., Defelice, S., et al. (2003). The incorporation of an ion channel gene mutation associated with the long QT syndrome (Q9E-hMiRP1) in a plasmid vector for site-specific arrhythmia gene therapy: In vitro and in vivo feasibility studies. Human Gene Therapy, 14(9), 907–922.PubMedCrossRefGoogle Scholar
  51. 51.
    Kikuchi, K., McDonald, A. D., Sasano, T., & Donahue, J. K. (2005). Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation, 111(3), 264–270.PubMedCrossRefGoogle Scholar
  52. 52.
    Amit, G., Kikuchi, K., Greener, I. D., Yang, L., Novack, V., & Donahue, J. K. (2010). Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation, 121(21), 2263–2270.PubMedCrossRefGoogle Scholar
  53. 53.
    Bikou, O., Trappe, K., Koch, M., Becker, R., Kelemen, K., Menrath, B., et al. (2009). Genetic ablation of atrial fibrillation in pigs with atrial fibrillation. Circulation, 120:S593 (abstract).Google Scholar
  54. 54.
    Stevenson, W. G., Wilber, D. J., Natale, A., Jackman, W. M., Marchlinski, F. E., Talbert, T., et al. (2008). Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: The multicenter thermocool ventricular tachycardia ablation trial. Circulation, 118(25), 2773–2782.PubMedCrossRefGoogle Scholar
  55. 55.
    Sasano, T., McDonald, A. D., Kikuchi, K., & Donahue, J. K. (2006). Molecular ablation of ventricular tachycardia after myocardial infarction. Nature Medicine, 12(11), 1256–1258.PubMedCrossRefGoogle Scholar
  56. 56.
    Trimmer, J. S., Cooperman, S. S., Tomiko, S. A., Zhou, J. Y., Crean, S. M., Boyle, M. B., et al. (1989). Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron, 3(1), 33–49.PubMedCrossRefGoogle Scholar
  57. 57.
    Hayward, L. J., Brown, R. H., Jr., & Cannon, S. C. (1996). Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker. Journal of Gene Physiology, 107(5), 559–576.CrossRefGoogle Scholar
  58. 58.
    Ursell, P. C., Gardner, P. I., Albala, A., Fenoglio, J. J., Jr., & Wit, A. L. (1985). Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circulation Research, 56(3), 436–451.PubMedGoogle Scholar
  59. 59.
    Lau, D. H., Clausen, C., Sosunov, E. A., Shlapakova, I. N., Anyukhovsky, E. P., Danilo, P., Jr., et al. (2009). Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: An in silico, in vivo, in vitro study. Circulation, 119(1), 19–27.PubMedCrossRefGoogle Scholar
  60. 60.
    Coronel, R., Lau, D. H., Sosunov, E. A., Janse, M. J., Danilo, P., Jr., Anyukhovsky, E. P., et al. (2010). Cardiac expression of skeletal muscle sodium channels increases longitudinal conduction velocity in the canine 1-week myocardial infarction. Heart Rhythm, 7(8), 1104–1110.PubMedCrossRefGoogle Scholar
  61. 61.
    Hennan, J. K., Swillo, R. E., Morgan, G. A., Keith, J. C., Jr., Schaub, R. G., Smith, R. P., et al. (2006). Rotigaptide (ZP123) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open-chest dogs. The Journal of Pharmacology and Experimental Therapeutics, 317(1), 236–243.PubMedCrossRefGoogle Scholar
  62. 62.
    Kjolbye, A. L., Dikshteyn, M., Eloff, B. C., Deschenes, I., & Rosenbaum, D. S. (2008). Maintenance of intercellular coupling by the antiarrhythmic peptide rotigaptide suppresses arrhythmogenic discordant alternans. American Journal of Physiology. Heart and Circulatory Physiology, 294(1), H41–H49.PubMedCrossRefGoogle Scholar
  63. 63.
    Dhein, S., Larsen, B. D., Petersen, J. S., & Mohr, F. W. (2003). Effects of the new antiarrhythmic peptide ZP123 on epicardial activation and repolarization pattern. Cell Communication & Adhesion, 10(4–6), 371–378.Google Scholar
  64. 64.
    Wiegerinck, R. F., de Bakker, J. M., Opthof, T., de Jonge, N., Kirkels, H., Wilms-Schopman, F. J., et al. (2009). The effect of enhanced gap junctional conductance on ventricular conduction in explanted hearts from patients with heart failure. Basic Research in Cardiology, 104(3), 321–332.PubMedCrossRefGoogle Scholar
  65. 65.
    Axelsen, L. N., Stahlhut, M., Mohammed, S., Larsen, B. D., Nielsen, M. S., Holstein-Rathlou, N. H., et al. (2006). Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). Journal of Molecular and Cellular Cardiology, 40(6), 790–798.PubMedCrossRefGoogle Scholar
  66. 66.
    Kitamura, H., Ohnishi, Y., Yoshida, A., Okajima, K., Azumi, H., Ishida, A., et al. (2002). Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. Journal of Cardiovascular Electrophysiology, 13(9), 865–870.PubMedCrossRefGoogle Scholar
  67. 67.
    Kostin, S., Dammer, S., Hein, S., Klovekorn, W. P., Bauer, E. P., & Schaper, J. (2004). Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovascular Research, 62(2), 426–436.PubMedCrossRefGoogle Scholar
  68. 68.
    Sepp, R., Severs, N. J., & Gourdie, R. G. (1996). Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart, 76(5), 412–417.PubMedCrossRefGoogle Scholar
  69. 69.
    Smith, J. H., Green, C. R., Peters, N. S., Rothery, S., & Severs, N. J. (1991). Altered patterns of gap junction distribution in ischemic heart disease. immunohistochemical study human myocardium using laser scanning confocal microscopy. The American Journal of Pathology, 139(4), 801–821.PubMedGoogle Scholar
  70. 70.
    Peters, N. S., Green, C. R., Poole-Wilson, P. A., & Severs, N. J. (1993). Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation, 88(3), 864–875.PubMedGoogle Scholar
  71. 71.
    Dupont, E., Matsushita, T., Kaba, R. A., Vozzi, C., Coppen, S. R., Khan, N., et al. (2001). Altered connexin expression in human congestive heart failure. Journal of Molecular and Cellular Cardiology, 33(2), 359–371.PubMedCrossRefGoogle Scholar
  72. 72.
    Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 13(4), 486–491.PubMedCrossRefGoogle Scholar
  73. 73.
    Anyukhovsky, E.P., Sosunov, E.A., Kryukova, Y., Prestia, K., Ozgen, N., Cohen, I.S., et al. (2010). Expression of skeletal muscle sodium channel (Nav1.4) or Connexin32 prevents reperfusion arrhythmias in murine heart. Cardiovascular Research, Epublished ahead of print.Google Scholar
  74. 74.
    Kanno, S., Kovacs, A., Yamada, K. A., & Saffitz, J. E. (2003). Connexin43 as a determinant of myocardial infarct size following coronary occlusion in mice. Journal of the American College of Cardiology, 41(4), 681–686.PubMedCrossRefGoogle Scholar
  75. 75.
    Hawat, G., Benderdour, M., Rousseau, G., & Baroudi, G. (2010). Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflügers Archives – European The Journal of Physiology, 460(3), 583–592.CrossRefGoogle Scholar
  76. 76.
    Schlack, W., Uebing, A., Schafer, M., Bier, F., Schafer, S., Piper, H. M., et al. (1994). Regional contractile blockade at the onset of reperfusion reduces infarct size in the dog heart. Pflügers Archives – European The Journal of Physiology, 428(2), 134–141.CrossRefGoogle Scholar
  77. 77.
    Garcia-Dorado, D., Inserte, J., Ruiz-Meana, M., Gonzalez, M. A., Solares, J., Julia, M., et al. (1997). Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation, 96(10), 3579–3586.PubMedGoogle Scholar
  78. 78.
    Schlack, W., Preckel, B., Barthel, H., Obal, D., & Thamer, V. (1997). Halothane reduces reperfusion injury after regional ischaemia in the rabbit heart in vivo. British Journal of Anesthesia, 79(1), 88–96.Google Scholar
  79. 79.
    Lee, T. M., & Chou, T. F. (2003). Troglitazone administration limits infarct size by reduced phosphorylation of canine myocardial connexin43 proteins. American Journal of Physiology. Heart and Circulatory Physiology, 285(4), H1650–H1659.PubMedGoogle Scholar
  80. 80.
    Prestia, K., Kelly, C. W., Sosunov, E. A., Anyukhovsky, E. P., Brink, P. R., Rosen, M. R., et al. (2009). Connexin 32 influences infarct size following left anterior descending artery ligation in mice. Heart Rhythm, 6(5 S):S458 (Abstract).Google Scholar
  81. 81.
    Macia, E., & Boyden, P. A. (2009). Stem cell therapy is proarrhythmic. Circulation, 119(13), 1814–1823.PubMedCrossRefGoogle Scholar
  82. 82.
    Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824.PubMedCrossRefGoogle Scholar
  83. 83.
    Fernandes, S., van Rijen, H. V., Forest, V., Evain, S., Leblond, A. L., Merot, J., et al. (2009). Cardiac cell therapy: Overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias. Journal of Cellular and Molecular Medicine, 13(9B), 3703–3712.PubMedCrossRefGoogle Scholar
  84. 84.
    Akar, F. G., Wu, R. C., Juang, G. J., Tian, Y., Burysek, M., Disilvestre, D., et al. (2005). Molecular mechanisms underlying K + current downregulation in canine tachycardia-induced heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H2887–H2896.PubMedCrossRefGoogle Scholar
  85. 85.
    Miake, J., Marbán, E., & Nuss, H. B. (2003). Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. The Journal of Clinical Investigation, 111(10), 1529–1536.PubMedGoogle Scholar
  86. 86.
    de Boer, T. P., van Veen, T. A. B., Houtman, M. J., Jansen, J. A., van Amersfoorth, S. C. M., Doevendans, P. A., et al. (2006). Inhibition of cardiomyocyte automaticity by electrotonic application of inward rectifier current from Kir2.1 expressing cells. Medical and Biological Engineering and Computing, 44(7), 537–542.PubMedCrossRefGoogle Scholar
  87. 87.
    Mazhari, R., Nuss, H. B., Armoundas, A. A., Winslow, R. L., & Marbán, E. (2002). Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. The Journal of Clinical Investigation, 109(8), 1083–1090.PubMedGoogle Scholar
  88. 88.
    Brunner, M., Kodirov, S. A., Mitchell, G. F., Buckett, P. D., Shibata, K., Folco, E. J., et al. (2003). In vivo gene transfer of Kv1.5 normalizes action potential duration and shortens QT interval in mice with long QT phenotype. American Journal of Physiology. Heart and Circulatory Physiology, 285(1), H194–H203.PubMedGoogle Scholar
  89. 89.
    Kodirov, S. A., Brunner, M., Busconi, L., & Koren, G. (2003). Long-term restitution of 4-aminopyridine-sensitive currents in Kv1DN ventricular myocytes using adeno-associated virus-mediated delivery of Kv1.5. FEBS Letters, 550(1–3), 74–78.PubMedCrossRefGoogle Scholar
  90. 90.
    Yankelson, L., Feld, Y., Bressler-Stramer, T., Itzhaki, I., Huber, I., Gepstein, A., et al. (2008). Cell therapy for modification of the myocardial electrophysiological substrate. Circulation, 117(6), 720–731.PubMedCrossRefGoogle Scholar
  91. 91.
    Nuss, H. B., Johns, D. C., Kaab, S., Tomaselli, G. F., Kass, D., Lawrence, J. H., et al. (1996). Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: A prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Therapy, 3(10), 900–912.PubMedGoogle Scholar
  92. 92.
    Feld, Y., Melamed-Frank, M., Kehat, I., Tal, D., Marom, S., & Gepstein, L. (2002). Electrophysiological modulation of cardiomyocytic tissue by transfected fibroblasts expressing potassium channels: A novel strategy to manipulate excitability. Circulation, 105(4), 522–529.PubMedCrossRefGoogle Scholar
  93. 93.
    Ennis, I. L., Li, R. A., Murphy, A. M., Marbán, E., & Nuss, H. B. (2002). Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. The Journal of Clinical Investigation, 109(3), 393–400.PubMedGoogle Scholar
  94. 94.
    Byrne, M. J., Power, J. M., Preovolos, A., Mariani, J. A., Hajjar, R. J., & Kaye, D. M. (2008). Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy, 15(23), 1550–1557.PubMedCrossRefGoogle Scholar
  95. 95.
    Hajjar, R. J., Schmidt, U., Matsui, T., Guerrero, J. L., Lee, K. H., Gwathmey, J. K., et al. (1998). Modulation of ventricular function through gene transfer in vivo. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5251–5256.PubMedCrossRefGoogle Scholar
  96. 96.
    Del, M. F., Williams, E., Lebeche, D., Schmidt, U., Rosenzweig, A., Gwathmey, J. K., et al. (2001). Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation, 104(12), 1424–1429.CrossRefGoogle Scholar
  97. 97.
    Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., et al. (2009). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. Journal of Cardiac Failure, 15(3), 171–181.PubMedCrossRefGoogle Scholar
  98. 98.
    Del, M. F., Lebeche, D., Guerrero, J. L., Tsuji, T., Doye, A. A., Gwathmey, J. K., et al. (2004). Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proceedings of the National Academy of Sciences of the United States of America, 101(15), 5622–5627.CrossRefGoogle Scholar
  99. 99.
    Prunier, F., Kawase, Y., Gianni, D., Scapin, C., Danik, S. B., Ellinor, P. T., et al. (2008). Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation, 118(6), 614–624.PubMedCrossRefGoogle Scholar
  100. 100.
    Chen, Y., Escoubet, B., Prunier, F., Amour, J., Simonides, W. S., Vivien, B., et al. (2004). Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmias. Circulation, 109(15), 1898–1903.PubMedCrossRefGoogle Scholar
  101. 101.
    Cutler, M. J., Wan, X., Laurita, K. R., Hajjar, R. J., & Rosenbaum, D. S. (2009). Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circulation Arrhythmia and Electrophysiology, 2(6), 686–694.PubMedCrossRefGoogle Scholar
  102. 102.
    Muruve, D. A. (2004). The innate immune response to adenovirus vectors. Human Gene Therapy, 15(12), 1157–1166.PubMedCrossRefGoogle Scholar
  103. 103.
    Zincarelli, C., Soltys, S., Rengo, G., & Rabinowitz, J. E. (2008). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy, 16(6), 1073–1080.PubMedCrossRefGoogle Scholar
  104. 104.
    Zincarelli, C., Soltys, S., Rengo, G., Koch, W. J., & Rabinowitz, J. E. (2010). Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clinical and Translational Science, 3(3), 81–89.PubMedCrossRefGoogle Scholar
  105. 105.
    Boink, G. J. J., Seppen, J., de Bakker, J. M. T., & Tan, H. L. (2006). Gene therapy to create biological pacemakers. Medical & Biological Engineering & Computing, 45, 167–176.CrossRefGoogle Scholar
  106. 106.
    Gray, S. J., & Samulski, R. J. (2008). Optimizing gene delivery vectors for the treatment of heart disease. Expert Opinion on Biological Therapy, 8(7), 911–922.PubMedCrossRefGoogle Scholar
  107. 107.
    Martin-Puig, S., Wang, Z., & Chien, K. R. (2008). Lives of a heart cell: Tracing the origins of cardiac progenitors. Cell Stem Cell, 2(4), 320–331.PubMedCrossRefGoogle Scholar
  108. 108.
    Freund, C., & Mummery, C. L. (2009). Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. Journal of Cellular Biochemistry, 107(4), 592–599.PubMedCrossRefGoogle Scholar
  109. 109.
    Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., et al. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290–2293.PubMedCrossRefGoogle Scholar
  110. 110.
    Dick, A. J., Guttman, M. A., Raman, V. K., Peters, D. C., Pessanha, B. S., Hill, J. M., et al. (2003). Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation, 108(23), 2899–2904.PubMedCrossRefGoogle Scholar
  111. 111.
    Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112(10), 1451–1461.PubMedCrossRefGoogle Scholar
  112. 112.
    Barbash, I. M., Chouraqui, P., Baron, J., Feinberg, M. S., Etzion, S., Tessone, A., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868.PubMedCrossRefGoogle Scholar
  113. 113.
    Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.PubMedCrossRefGoogle Scholar
  114. 114.
    Rosen, A. B., Kelly, D. J., Schuldt, A. J., Lu, J., Potapova, I. A., Doronin, S. V., et al. (2007). Finding fluorescent needles in the cardiac haystack: Tracking humanmesenchymal stem cells labeled with quantum dots for quantitative in vivo 3-D fluorescence analysis. Stem Cells, 28(8), 2128–2138.CrossRefGoogle Scholar
  115. 115.
    Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circulation Research, 96(1), 127–137.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Heart Failure Research CenterAcademic Medical CenterAmsterdamNetherlands
  2. 2.Interuniversity Cardiology Institute of the Netherlands (ICIN)UtrechtNetherlands
  3. 3.Department of PharmacologyColumbia UniversityNew YorkUSA
  4. 4.Department of PediatricsColumbia UniversityNew YorkUSA
  5. 5.Center for Molecular TherapeuticsColumbia UniversityNew YorkUSA

Personalised recommendations