New antiarrhythmic drugs for atrial fibrillation: Focus on dronedarone and vernakalant

  • A. John Camm
  • Irina Savelieva


The prevalence of atrial fibrillation (AF) is forecast to rise to 2–5% of the general population by 2050. Of the two fundamental treatment strategies for AF management, rhythm control is the approach which is generally preferred for active, symptomatic, and/or younger patients, whereas rate control is all that is found necessary in the more elderly, sedentary, asymptomatic individual. In many cases, at neither extreme, there remains a genuine choice of therapy, and for those patients, antiarrhythmic strategies would be preferred if effective and safe antiarrhythmic medications were available. Many new antiarrhythmic agents exploiting new mechanisms of action or novel combinations of established antiarrhythmic activity are currently being investigated. Agents which selectively inhibit ion channels specifically involved in atrial repolarization, so-called atrial repolarization delaying agents, are widely acknowledged as potentially ideal antiarrhythmic treatments, as they will probably be both effective and safe, at the very least (free of pro-arrhythmic effects at the ventricular level). Modified analogues of traditional antiarrhythmic drugs with different combinations of ion channel and receptor blocking effects, novel mechanisms of action, and less complicated metabolic profiles are also under development. Completely innovative antiarrhythmic agents with new antiarrhythmic mechanisms, such as stretch receptor antagonism, sodium calcium exchanger blockade, late sodium channel inhibition, and gap junction modulation are also being explored. In addition, there is increasing evidence in support of the antiarrhythmic action of non-antiarrhythmic drugs. Treatments with statins, omega-3 fatty acids, angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, and aldosterone antagonists are all potentially valuable, over and above any effect related to the treatment of underlying heart disease.


Atrial fibrillation Antiarrhythmic drugs Rhythm control Atrial repolarization delaying agents Dronedarone Vernakalant Gap junction modifiers Rotigaptide 


  1. 1.
    Camm, A. J., Savelieva, I., & Lip, G. Y. (2007). Rate control in the medical management of atrial fibrillation. Heart, 93, 35–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Jahangiri, M., Weir, G., Mandal, K., Savelieva, I., & Camm, J. (2006). Current strategies in the management of atrial fibrillation. Annals of Thoracic Surgery, 82, 357–364.PubMedCrossRefGoogle Scholar
  3. 3.
    Savelieva, I., & Camm, J. (2008). Update on atrial fibrillation: Part II. Clinical Cardiology, 31, 102–108.PubMedCrossRefGoogle Scholar
  4. 4.
    Touboul, P., Brugada, J., Capucci, A., Crijns, H. J., Edvardsson, N., & Hohnloser, S. H. (2003). Dronedarone for prevention of atrial fibrillation: a dose-ranging study. European Heart Journal, 24, 1481–1487.PubMedCrossRefGoogle Scholar
  5. 5.
    Singh, B. N., Connolly, S. J., Crijns, H. J., Roy, D., Kowey, P. R., Capucci, A., et al. (2007). Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. New England Journal of Medicine, 357, 987–999.PubMedCrossRefGoogle Scholar
  6. 6.
    Hohnloser, S. H., & Singh, B. N. (2005). Dronedarone significantly decrease the combined endpoint of hospitalization and death in patients with atrial fibrillation. Circulation, 112(Supplement II), 325–326.Google Scholar
  7. 7.
    Gautier, P., Serre, M., Cosnier-Pucheu, S., Djandjighian, L., Roccon, A., Herbert, J. M., et al. (2005). In vivo and in vitro antiarrhythmic effects of SSR149744C in animal models of atrial fibrillation and ventricular arrhythmias. Journal of Cardiovascular Pharmacology, 45, 125–135.PubMedCrossRefGoogle Scholar
  8. 8.
    Kowey, P. R., Aliot, E. M., Capucci, A., Connolly, S. J., Crijns, H. J., Hohnloser, S. H., et al. (2007). Placebo-controlled double-blind dose-ranging study of the efficacy and safety of SSR149744C in patients with recent atrial fibrillation/flutter. Heart Rhythm, 4(Supplement 5S), S72 (abstract).Google Scholar
  9. 9.
    Kowey, P., Eliot, E. M., Capucci, A., Connolly, S. J, Crijns, H., Hohnloser, S. H., et al. (2008). Placebo-controlled double-blind dose-ranging study of the efficacy and safety of celivarone for the prevention of ventricular arrhythmia-triggered ICD interventions. Journal of the American College of Cardiology, 51(Supplement A2), (abstract).Google Scholar
  10. 10.
    Pritchett, E. L., Page, R. L., Connolly, S. J., Marcello, S. R., Schnell, D. J., & Wilkinson, W. E. (2000). Antiarrhythmic effects of azimilide in atrial fibrillation: Efficacy and dose–response. Journal of the American College of Cardiology, 36, 794–802.PubMedCrossRefGoogle Scholar
  11. 11.
    Camm, A. J., Pratt, C. M., Schwartz, P. J., Al-Khalidi, H. R., Spyt, M. J., Holroyde, M. J., et al. (2004). Mortality in patients with recent myocardial infarction: A randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation, 109, 990–996.PubMedCrossRefGoogle Scholar
  12. 12.
    Pratt, C. M., Singh, S. N., Al-Khalidi, H. R., Brum, J. M., Holroyde, M. J., Marcello, S. R., et al. (2004). The efficacy of azimilide in the treatment of atrial fibrillation in the presence of left ventricular systolic dysfunction: Results from the Azimilide Postinfarct Survival Evaluation (ALIVE) trial. Journal of the American College of Cardiology, 43, 1211–1216.PubMedCrossRefGoogle Scholar
  13. 13.
    Pritchett, E. L., Kowey, P., Connolly, S., Page, R. L., Kerr, C., Wilkinson, W. E., et al. (2006). Antiarrhythmic efficacy of azimilide in patients with atrial fibrillation. Maintenance of sinus rhythm after conversion to sinus rhythm. American Heart Journal, 151, 1043–1049.PubMedCrossRefGoogle Scholar
  14. 14.
    Lombardi, F., Borggrefe, M., Ruzyllo, W., Luderitz, B., & A-COMET-II Investigators (2006). Azimilide vs placebo and sotalol for persistent atrial fibrillation: the A-COMET-II (Azimilide-CardiOversion MaintEnance Trial-II) trial. European Heart Journal, 27, 2224–2231.PubMedCrossRefGoogle Scholar
  15. 15.
    Kerr, C. R., Connolly, S. J., Kowey, P., Page, R. L., Pritchett, E. L., Ruda, M. Y., et al. (2006). Efficacy of azimilide for the maintenance of sinus rhythm in patients with paroxysmal atrial fibrillation in the presence and absence of structural heart disease. American Journal of Cardiology, 98, 215–218.PubMedCrossRefGoogle Scholar
  16. 16.
    Hohnloser, S. H., Dorian, P., Straub, M., Beckmann, K., & Kowey, P. (2004). Safety and efficacy of intravenously administered tedisamil for rapid conversion of recent-onset atrial fibrillation or atrial flutter. Journal of the American College of Cardiology, 44, 99–104.PubMedCrossRefGoogle Scholar
  17. 17.
    Roy, D., Rowe, B. H., Stiell, I. G., Coutu, B., Ip, J. H., Phaneuf, D., et al. (2004). A randomized, controlled trial of RSD1235, a novel anti-arrhythmic agent, in the treatment of recent onset atrial fibrillation. Journal of the American College of Cardiology, 44, 2355–2361.PubMedCrossRefGoogle Scholar
  18. 18.
    Roy, D., Pratt, C. M., Torp-Pedersen, C., Wyse, D. G., Toft, E., Juul-Moller, S., et al. (2008). Vernakalant hydrochloride for rapid conversion of atrial fibrillation: A phase 3, randomized, placebo-controlled trial. Circulation, 117, 1518–1525.PubMedCrossRefGoogle Scholar
  19. 19.
    Roy, D., Pratt, C., Juul-Møller, S., Toft, E., Wyse, D. G., Nielsen, T., et al. (2006). Efficacy and tolerance of RSD1235 in the treatment of atrial fibrillation or atrial flutter: Results of a phase III, randomized, placebo-controlled, multicenter trial. Journal of the American College of Cardiology, 47(Supplement A), 10A (abstract).Google Scholar
  20. 20.
    CARDIOME PHARMA CORP. Retrieved February 29, 2008 from
  21. 21.
  22. 22.
    Rivard, L., Shiroshita-Takeshita, A., Maltais, C., Ford, J., Pinnock, R., Madge, D., et al. (2005). Electrophysiological and atrial antiarrhythmic effects of a novel I Kur/Kv1.5 blocker in dogs. Heart Rhythm, 2(Supplement 1S), S180 (abstract).CrossRefGoogle Scholar
  23. 23.
    Polontchouk, L., Haefliger, J. A., Ebelt, B., Schaefer, T., Stuhlmann, D., Mehlhorn, U., et al. (2001). Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. Journal of the American College of Cardiology, 38, 883–891.PubMedCrossRefGoogle Scholar
  24. 24.
    Wetzel, U., Boldt, A., Lauschke, J., Weigl, J., Schirdewahn, P., Dorszewski, A., et al. (2005). Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiologies. Heart, 91, 166–170.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiroshita-Takeshita, A., Sakabe, M., Haugan, K., Hennan, J. K., & Nattel, S. (2007). Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation, 115, 310–318.PubMedCrossRefGoogle Scholar
  26. 26.
    Bode, F., Sachs, F., & Franz, M. R. (2001). Tarantula peptide inhibits atrial fibrillation. Nature, 409, 35–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Burashnikov, A., Di Diego, J. M., Zygmunt, A. C., Belardinelli, L., & Antzelevitch, C. (2007). Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: Differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation, 116, 1449–1457.PubMedCrossRefGoogle Scholar
  28. 28.
    Savelieva, I., & Camm, A. J. (2004). Atrial fibrillation and heart failure: Natural history and pharmacological treatment. Europace, 5(Supplement 1), S5–S19.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee, K. W., Everett, T. H., Rahmutula, D., Guerra, J. M., Wilson, E., Ding, C., et al. (2006). Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation, 114, 1703–1712.PubMedCrossRefGoogle Scholar
  30. 30.
    Dernellis, J., & Panaretou, M. (2004). Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. European Heart Journal, 25, 1100–1117.PubMedCrossRefGoogle Scholar
  31. 31.
    Jahangiri, M., & Camm, A. J. (2007). Do corticosteroids prevent atrial fibrillation after cardiac surgery. Nature Clinical Practice Cardiovascular Medicine, 4, 592–593.PubMedCrossRefGoogle Scholar
  32. 32.
    Savelieva, I., & Camm, J. (2008). Statins and polyunsaturated fatty acids for treatment of atrial fibrillation. Nature Clinical Practice Cardiovascular Medicine, 5, 30–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Patti, G., Chello, M., Candura, D., Pasceri, V., D’Ambrosio, A., Covino, E., et al. (2006). Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) Study. Circulation, 114, 1455–1461.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Division of Cardiac & Vascular SciencesSt George’s University of LondonLondonUK

Personalised recommendations