Advancement in antithrombotics for stroke prevention in atrial fibrillation

  • Mohammed Haris Umer Usman
  • Sabreen Raza
  • Shariq Raza
  • Michael Ezekowitz


The focus of this review is the evolving field of antithrombotic drug therapy for stroke prevention in patients with atrial fibrillation (AF). The current standard of therapy includes warfarin, acenocoumarol and phenprocoumon which have proven efficacy by reducing stroke by 68% against placebo. However, a narrow therapeutic index, wide variation in metabolism, and numerous food and drug interactions have limited their clinical application to only 50% of the indicated population. Newer agents such as direct thrombin inhibitors, factor Xa inhibitors, factor IX inhibitors, tissue factor inhibitors and a novel vitamin K antagonist are being developed to overcome the limitations of current agents. The direct thrombin inhibitor dabigatran is farthest along in development. Further clinical trial testing, and eventual incorporation into clinical practice will depend on safety, efficacy and cost. Development of a novel vitamin K antagonist with better INR control will challenge the newer mechanistic agents in their quest to replace the existing vitamin K antagonists. Till then, the large unfilled gap to replace conventional agents remains open. This review will assess all these agents, and compare their mechanism of action, stage of development and pharmacologic profile.


Bioavailability Mechanism of action Mode of excretion Half-life 


  1. 1.
    Mueller, R. L., & Scheidt, S. (1994). History of drugs for thrombotic disease. Discovery, development, and directions for the future. Circulation, 89, 432–449.PubMedGoogle Scholar
  2. 2.
    Shapiro, S. S. (2003). Treating thrombosis in the 21st century. New England Journal of Medicine, 349, 1762–1764.PubMedCrossRefGoogle Scholar
  3. 3.
    Fasco, M. J., & Principe, L. M. (1982). R- and S- Warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. Journal of Biological Chemistry, 257, 4894–4901.PubMedGoogle Scholar
  4. 4.
    Hirsh, J., Dalen, J. E., Anderson, D. R., Poller, L., Bussey, H., Ansell, J., et al. (2001). Oral anticoagulants: Mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest, 119(1 Suppl), 8S–21S (Jan).PubMedCrossRefGoogle Scholar
  5. 5.
    Ansell, J., Hirsh, J., Poller, L., Bussey, H., Jacobson, A., & Hylek, E. (2004). The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest, 126(Suppl), 204S–233S.PubMedCrossRefGoogle Scholar
  6. 6.
    Ufer, M. (2005). Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clinical Pharmacokinetics, 44, 1227–1246 Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Petersen, P., Boysen, G., Godtfredsen, J., Andersen, E. D., & Andersen, B. (1989). Placebo controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet, 1, 175–179.PubMedCrossRefGoogle Scholar
  8. 8.
    Petersen, P., & Boysen, G. (1990). Stroke prevention in atrial fibrillation study. New England Journal of Medicine, 323, 482.Google Scholar
  9. 9.
    The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators (1990). The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation.. New England Journal of Medicine, 323, 1505–1511.Google Scholar
  10. 10.
    Stroke Prevention in Atrial Fibrillation Study Group (1991). Final results. Circulation, 84, 527–539.Google Scholar
  11. 11.
    Connolly, S. J., Laupacis, A., Gent, M., Roberts, R. S., Cairns, J. A., & Joyner, C. (1991). Canadian Atrial Fibrillation Anticoagulation (CAFA) Study. Journal of the American College of Cardiology, 18, 349–355.PubMedCrossRefGoogle Scholar
  12. 12.
    Ezekowitz, M. D., Bridgers, S. L., James, K. E., et al. (1992). Warfarin in the prevention of stroke associated with nonrheumatic atrial fibrillation. Veterans Affairs Stroke Prevention in Nonrheumatic Atrial Fibrillation Investigators. New England Journal of Medicine, 327, 1406–1412.PubMedGoogle Scholar
  13. 13.
    EAFT (European Atrial Fibrillation Trial) Study Group (1993). Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke.. Lancet, 342, 1255–1262.Google Scholar
  14. 14.
    Stroke Prevention in Atrial Fibrillation II Study Group (1994). Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. Lancet, 343, 687–691.Google Scholar
  15. 15.
    Morocutti, C., Amabile, G., Fattapposta, F., et al. (1997). Indobufen versus warfarin in the secondary prevention of major vascular events in nonrheumatic atrial fibrillation. SIFA (Studio Italiano Fibrillazione Atriale) Investigators. Stroke, 28, 1015–1021.PubMedGoogle Scholar
  16. 16.
    Gulløv, A. L., Koefoed, B. G., Petersen, P., et al. (1998). Fixed minidose warfarin and aspirin alone and in combination vs adjusted-dose warfarin for stroke prevention in atrial fibrillation: Second Copenhagen Atrial Fibrillation, Aspirin, and Anticoagulation Study. Archives of Internal Medicine, 158, 1513–1521.PubMedCrossRefGoogle Scholar
  17. 17.
    Hellemons, B. S., Langenberg, M., Lodder, J., et al. (1999). Primary prevention of arterial thromboembolism in non-rheumatic atrial fibrillation in primary care: randomised controlled trial comparing two intensities of coumarin with aspirin. British Medical Journal, 319, 958–964.PubMedGoogle Scholar
  18. 18.
    Pérez-Gómez, F, Alegría, E, Berjón, J., Iriarte, J. A., Zumalde, J., Salvador, A, Mataix, L., & NASPEAF Investigators (2004). Comparative effects of antiplatelet, anticoagulant, or combined therapy in patients with valvular and nonvalvular atrial fibrillation: a randomized multicenter study. Journal of the American College of Cardiology, 44, 1557–1566.PubMedCrossRefGoogle Scholar
  19. 19.
    Writing ACTIVE Group (2006). Group on behalf of the ACTIVE Investigators. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet, 367, 1903–1912.CrossRefGoogle Scholar
  20. 20.
    Antithrombotic Therapy in Atrial Fibrillation Study Group (2006). [The randomized study of efficiency and safety of antithrombotic therapy in nonvalvular atrial fibrillation: warfarin compared with aspirin]. Zhonghua Xin Xue Guan Bing Za Zhi, 34, 295–298.Google Scholar
  21. 21.
    Mant, J., Hobbs, F. D., Fletcher, K., et al. (2007). BAFTA investigators; Midland Research Practices Network (MidReC). Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet, 370, 493–503.PubMedCrossRefGoogle Scholar
  22. 22.
    Hart, R. G., Pearce, L. A., & Aguilar, M. I. (2007). Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Annals of Internal Medicine, 146, 857–867.PubMedGoogle Scholar
  23. 23.
    Bungard, T. J., Ghali, W. A., Teo, K. K., McAlister, F. A., & Tsuyuki, R. T. (2000). Why do patients with atrial fibrillation not receive warfarin? Archives of Internal Medicine, 160, 41–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Bradley, B. C., Perdue, K. S., Tisdel, K. A., & Gilligan, D. M. (2000). Frequency of anticoagulation for atrial fibrillation and reasons for its non-use at a Veterans Affairs medical center. American Journal of Cardiology, 85, 568–572.PubMedCrossRefGoogle Scholar
  25. 25.
    Siguret, V. (2007 ). Impact of pharmacogenetics on interindividual variability in the response to vitamin K antagonist therapy. Pathologie et Biologie (Paris), 55, 295–298 Article in French.CrossRefGoogle Scholar
  26. 26.
    Ansell, J., Hirsh, J., Poller, L., Bussey, H., Jacobson, A., & Hylek, E. (2004). The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest, 126(Suppl), 204S–233S.PubMedCrossRefGoogle Scholar
  27. 27.
    Carlquist, J. F., Horne, B. D., Muhlestein, J. B., et al. (2006). Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. Journal of Thrombosis and Thrombolysis, 22, 191–197.PubMedCrossRefGoogle Scholar
  28. 28.
    Bauer, K. A. (2006). New anticoagulants. Hematology (Am Soc Hematol Educ Program), 450–456, DOI  10.1182/asheducation-2006.1.450.
  29. 29.
    Gage, B. F., Eby, C., Milligan, P. E., Banet, G. A., Duncan, J. R., & McLeod, H. L. (2004). Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thrombosis and Haemostasis, 91, 87–94.PubMedGoogle Scholar
  30. 30.
    Bates, S. M., & Weitz, J. I. (2000). The mechanism of action of thrombin inhibitors. Journal of Invasive Cardiology, 12(Suppl F), 27F–32F.PubMedGoogle Scholar
  31. 31.
    Weitz, J. I., Leslie, B., & Hudoba, M. (1998). Thrombin binds to soluble fibrin degradation products where it is protected from inhibition by heparin-antithrombin but susceptible to inactivation by antithrombin-independent inhibitors. Circulation, 97, 544–552.PubMedGoogle Scholar
  32. 32.
    Olsson, S. B. (2003). Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet, 362, 1691–1698.PubMedCrossRefGoogle Scholar
  33. 33.
    Albers, G. W., Diener, H. C., Frison, L., et al. (2005). SPORTIF Executive Steering Committee for the SPORTIF V Investigators. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. JAMA, 293, 690–698.PubMedCrossRefGoogle Scholar
  34. 34.
    Akins, P. T., Feldman, H. A., Zoble, R. G., et al. (2007). Secondary stroke prevention with ximelagatran versus warfarin in patients with atrial fibrillation: pooled analysis of SPORTIF III and V clinical trials. Stroke, 38, 874–880.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaul, S., Diamond, G. A., & Weintraub, W. S. (2005). Trials and tribulations of non-inferiority: the ximelagatran experience. Journal of the American College of Cardiology, 46, 1986–1995.PubMedCrossRefGoogle Scholar
  36. 36.
    Wallentin, L., Ezekowitz, M., Simmers, T. A., et al. (2005). PETRO-investigators. Safety and efficacy of a new oral direct thrombin inhibitor dabigatran in atrial fibrillation: a dose finding trial with comparison to warfarin. European Heart Journal, 26(suppl), 482 Abstract.Google Scholar
  37. 37.
    Gustafsson, D. (2003). Oral direct thrombin inhibitors in clinical development. Journal of Internal Medicine, 254, 322–334.PubMedCrossRefGoogle Scholar
  38. 38.
    Mungall, D. (2002). BIBR-1048 Boehringer Ingelheim. Current Opinion in Investigational Drugs, 3, 905–907.PubMedGoogle Scholar
  39. 39.
    Ezekowitz, M. D., Reilly, P. A., Nehmiz, G., Simmers, T. A., Nagarakanti, R., Parcham-Azad, K., et al. (2007). Dabigatran with or without concomitant aspirin compared with warfarin alone in patients with nonvalvular atrial fibrillation (PETRO Study). American Journal of Cardiology, 100(9), 1419–1426 (Nov 1).PubMedCrossRefGoogle Scholar
  40. 40.
    The Petro-ex Investigators (2006). Safety and efficacy of extended exposure to several doses of a new oral direct thrombin inhibitor dabigatran etexilate in atrial fibrillation. Cerebrovascular Diseases, 21(suppl 4), 2 Abstract.Google Scholar
  41. 41.
    Bauer, K. A. (2006). New anticoagulants: anti IIa vs anti Xa—is one better? Journal of Thrombosis and Thrombolysis, 21, 67–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Perzborn, E., Strassburger, J., Wilmen, A., et al. (2005). In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939—an oral, direct Factor Xa inhibitor. Thrombosis and Haemostasis, 3, 514–521.CrossRefGoogle Scholar
  43. 43.
    Mueck, W., Becka, M., Kubitza, D., Voith, B., & Zuehlsdorf, M. (2007). Population model of the pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct factor xa inhibitor—in healthy subjects. International Journal of Clinical Pharmacology and Therapeutics, 45, 335–344.PubMedGoogle Scholar
  44. 44.
    Kubitza, D., Becka, M., Wensing, G., Voith, B., & Zuehlsdorf, M. (2005). Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939—an oral, direct Factor Xa inhibitor—after multiple dosing in healthy male subjects. European Journal of Clinical Pharmacology, 61, 873–880.PubMedCrossRefGoogle Scholar
  45. 45.
    Kubitza, D., Becka, M., Zuehlsdorf, M., & Mueck, W. (2007). Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. Journal of Clinical Pharmacology, 47, 218–226.PubMedCrossRefGoogle Scholar
  46. 46.
    Kubitza, D., Becka, M., Zuehlsdorf, M., & Mueck, W. (2006). Effect of food, an antacid, and the H2 antagonist ranitidine on the absorption of BAY 59-7939 (rivaroxaban), an oral, direct Factor Xa inhibitor, in healthy subjects. Journal of Clinical Pharmacology, 46, 549–558.PubMedCrossRefGoogle Scholar
  47. 47.
    Pinto, D. J., Orwat, M. J., Koch, S., et al. (2007). Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. Journal of Medicinal Chemistry, 50, 5339–5356.PubMedCrossRefGoogle Scholar
  48. 48.
    Lassen, M. R., Davidson, B. L., Gallus, A., Pineo, G., Ansell, J., & Deitchman, D. (2007). The efficacy and safety of apixaban, an oral, direct factor Xa inhibitor, as thromboprophylaxis in patients following total knee replacement. Thrombosis and Haemostasis, 5, 2368–2375.CrossRefGoogle Scholar
  49. 49.
    Koopman, M. M. W., & Buller, H. R. (2003). Short- and long-acting synthetic pentasaccharides (minisymposium). Journal of Internal Medicine, 254, 335–342.PubMedCrossRefGoogle Scholar
  50. 50.
    Sanofi-aventis Press Release (2007). Scholar
  51. 51.
    Agnelli, G., Haas, S., Ginsberg, J. S., Krueger, K. A., Dmitrienko, A., & Brandt, J. T. (2007). A phase II study of the oral factor Xa inhibitor LY517717 for the prevention of venous thromboembolism after hip or knee replacement. Thrombosis and Haemostasis, 5, 746–753.CrossRefGoogle Scholar
  52. 52.
    Iwatsuki, Y., Shigenaga, T., Moritani, Y., et al. (2006) Biochemical and pharmacological profiles of YM150, an oral direct Factor Xa inhibitor. Blood, 108, Abstract 911.Google Scholar
  53. 53.
    Overvie R&D. (2003). Yamanouchi Pharmaceutical Co Ltd. Company Presentation.Google Scholar
  54. 54.
    Eriksson, B. I., Turpie, A. G., Lassen, M. R., et al. (2007). ONYX study group.A dose escalation study of YM150, an oral direct factor Xa inhibitor, in the prevention of venous thromboembolism in elective primary hip replacement surgery. Thrombosis and Haemostasis, 5, 1660–1665.CrossRefGoogle Scholar
  55. 55.
    Zafar, M. U., Vorchheimer, D. A., Gaztanaga, J., et al. (2007). Antithrombotic effects of factor Xa inhibition with DU-176b: Phase-I study of an oral, direct factor Xa inhibitor using an ex-vivo flow chamber. Thrombosis and Haemostasis, 98, 883–888.PubMedGoogle Scholar
  56. 56.
    Furugohri, T., Honda, Y., Matsumoto, C., et al. (2004). Antithrombotic and hemorrhagic effects of DU-176b, a novel, potent and orally active direct Factor Xa inhibitor: a wider safety margin compared to heparins and warfarin. American Society of Hematology Annual Meeting Abstract, 104, 1851.Google Scholar
  57. 57.
    Fukuda, T., Matsumoto, C., Honda, Y., Sugiyama, N., Morishima, Y., & Shibano, T. (2004). Antithrombotic properties of DU-176b, a novel, potent and orally active direct Factor Xa inhibitor in rat models of arterial and venous thrombosis: comparison with fondaparinux, an antithrombin dependent Factor Xa inhibitor. American Society of Hematology Annual Meeting Abstract, 104, 1852.Google Scholar
  58. 58.
    Neels, J. G., van Den Berg, B. M., Mertens, K., et al. (2000). Activation of factor IX zymogen results in exposure of a binding site for low-density lipoprotein receptor-related protein. Blood, 96, 3459–3465.PubMedGoogle Scholar
  59. 59.
    Lawson, J. H., & Mann, K. G. (1991). Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. Journal of Biological Chemistry, 266, 11317–11327.PubMedGoogle Scholar
  60. 60.
    Ahmad, S. S., Rawala-Sheikh, R., & Walsh, P. N. (1989). Platelet receptor occupancy with factor IXa promotes factor X activation. Journal of Biological Chemistry, 264, 20012–20016.PubMedGoogle Scholar
  61. 61.
    Chow, F. S., Benincosa, L. J., Sheth, S. B., et al. (2002). Pharmacokinetic and pharmacodynamic modeling of humanized anti-factor IX antibody (SB 249417) in humans. Clinical Pharmacology and Therapeutics, 71, 235–245.PubMedCrossRefGoogle Scholar
  62. 62.
    Dyke, C. K., Steinhubl, S. R., Kleiman, N. S., et al. (2006). First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation, 114, 2490–2497.PubMedCrossRefGoogle Scholar
  63. 63.
    Rothlein, R., Shen, J. M., Naser, N., et al. (2005). TTP889, a Novel Orally Active Partial Inhibitor of FIXa Inhibits Clotting in Two A/V Shunt Models without Prolonging Bleeding Times. Blood, 106, Abstract 1886.Google Scholar
  64. 64.
    Steffel, J., Lüscher, T. F., & Tanner, F. C. (2006). Tissue factor in cardiovascular disease. Molecular mechanisms and clinical implications. Circulation, 113, 722–731.PubMedCrossRefGoogle Scholar
  65. 65.
    Ragni, M., Cirillo, P., Pascucci, I., et al. (1996). Monoclonal antibody against tissue factor shortens tissue plasminogen activator lysis time and prevents reocclusion in a rabbit model of carotid artery thrombosis. Circulation, 93, 1913–1918.PubMedGoogle Scholar
  66. 66.
    Harker, L. A., Hanson, S. R., Wilcox, J. N., & Kelly, A. B. (1996). Antithrombotic and antilesion benefits without hemorrhagic risks by inhibiting tissue factor pathway. Haemostasis, 26(Suppl 1), 76–82 Review.PubMedGoogle Scholar
  67. 67.
    Himber, J., Kirchhofer, D., Riederer, M., Tschopp, T. B., Steiner, B., & Roux, S. P. (1997). Dissociation of antithrombotic effect and bleeding time prolongation in rabbits by inhibiting tissue factor function. Thrombosis and Haemostasis, 78, 1142–1149.PubMedGoogle Scholar
  68. 68.
    Pawashe, A., Golino, P., Ambrosio, G., et al. (1994). A monoclonal antibody against rabbit tissue factor inhibits thrombus formation in stenotic injured rabbit carotid arteries. Circulation Research, 74, 56–63.PubMedGoogle Scholar
  69. 69.
    Golino, P., Ragni, M., Cirillo, P., et al. (1998). Antithrombotic effects of recombinant human, active site-blocked factor VIIa in a rabbit model of recurrent arterial thrombosis. Circulation Research, 82, 39–46.PubMedGoogle Scholar
  70. 70.
    Riggs, J. R., Kolesnikov, A., Hendrix, J., et al. (2006). FVIIa inhibitors: A prodrug strategy to improve oral bioavailability. Bioorganic & Medicinal Chemistry Letters, 16, 2224–2228.CrossRefGoogle Scholar
  71. 71.
    Zbinden, K. G., Obst-Sander, U., Hilpert, K., et al. (2005). Selective and orally bioavailable phenylglycine tissue factor/factor VIIa inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 5344–5352.CrossRefGoogle Scholar
  72. 72.
    Himber, J., Refino, C. J., Burcklen, L., Roux, S., & Kirchhofer, D. (2001). Inhibition of arterial thrombosis by a soluble tissue factor mutant and active site-blocked factors IXa and Xa in the guinea pig. Thrombosis and Haemostasis, 85, 475–481.PubMedGoogle Scholar
  73. 73.
    Fingerle, J., Himber, J., Tschopp, T., Bunting, S., Steiner, B., & Riederer, M. A. (2001). Minimal bleeding risk after chronic application of factor VIIa inhibitor in a guinea pig model. Thrombosis and Haemostasis, Supplement:abstract #OC1766.Google Scholar
  74. 74.
    Szalony, J. A., Suleymanov, O. D., Salyers, A. K., et al. (2003). Administration of a small molecule tissue factor/factor VIIa inhibitor in a non-human primate thrombosis model of venous thrombosis: effects on thrombus formation and bleeding time. Thrombosis Research, 112, 167–174.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee, A., Agnelli, G., Buller, H., et al. (2001). Dose-response study of recombinant factor VIIa/tissue factor inhibitor recombinant nematode anticoagulant protein c2 in prevention of postoperative venous thromboembolism in patients undergoing total knee replacement. Circulation, 104, 74–78.PubMedCrossRefGoogle Scholar
  76. 76.
    Giugliano, R. P., Wiviott, S. D., Stone, P. H., et al. (2007). ANTHEM-TIMI-32 Investigators. Recombinant nematode anticoagulant protein c2 in patients with non-ST-segment elevation acute coronary syndrome: the ANTHEM-TIMI-32 trial. Journal of the American College of Cardiology, 49, 2398–2407.PubMedCrossRefGoogle Scholar
  77. 77.
    Shirk, R. A., & Vlasuk, G. P. (2007). Inhibitors of Factor VIIa/tissue factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1895–1900.PubMedCrossRefGoogle Scholar
  78. 78.
    Shirk, R. A., & Vlasuk, G. P. (2007). Inhibitors of Factor VIIa/tissue factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1895–1900.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mohammed Haris Umer Usman
    • 1
    • 2
  • Sabreen Raza
    • 1
  • Shariq Raza
    • 1
  • Michael Ezekowitz
    • 1
    • 3
  1. 1.Lankenau Institute for Medical ResearchWynnewoodUSA
  2. 2.Mercy Catholic Medical Center, Drexel University College of MedicineDarbyUSA
  3. 3.Lankenau Institute for Medical ResearchWynnewoodUSA

Personalised recommendations