Skip to main content
Log in

Impact of a computer assisted navigation system on radiation exposure during pediatric ablation procedures

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

During catheter ablation procedures, non-radiologic navigation systems may reduce fluoroscopic exposure and energy applications, as well as improve procedural success rates.

Objective

To examine the impact of a non-radiologic navigation system on ablation procedures in pediatric patients, the procedural characteristics and success rates prior to and following incorporation of the LocaLisa® (LL) navigation system into a pediatric electrophysiology laboratory were compared.

Methods

Between January 2000 and April 2005, 246 consecutive patients underwent catheter ablation for either Atrioventricular Reentry Tachycardia AVRT (168) or Atrioventricular Nodal Reentry Tachycardia AVNRT (78). Ablation procedures performed prior to LL (108) were compared to ablation procedures performed using LL (113). The first 25 patients using LL were censored to remove the bias of a learning curve.

Results

There was no difference in demographic features between the two groups. Statistically significant decreases were found in the diagnostic (11.4 ± 6.1 min v 18.8 ± 9.8 min w/o LL), ablation (5.7 ± 10.3 vs 18.5 ± 20.1 min w/o LL) and total (17.2 ± 12.6 vs 37.3 ± 21.3 min w/o LL) fluoroscopy times for the LL group, as well as in the total number of energy applications (9.0 ± 8.5 vs 12.3 ± 12.2 w/o LL). Success rates were 99.1% w/ LL v 97.2% w/o LL (p = NS). No major complications were observed in either group.

Conclusions

The use of a computer assisted navigation system significantly decreased the diagnostic, ablation, and total fluoroscopy times, as well as the number of energy applications, without affecting procedural success or complication rates. Non-radiologic navigation systems reduce radiation exposure during transcatheter electrophysiologic procedures and thus lower the lifetime radiation cumulative risk, a goal particularly important in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenthal, L. S., Mahesh, M., Beck, T. J., Saul, J. P., Miller, J. M., Kay, N., et al. (1998). Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. American Journal of Cardiology, 82, 451–458.

    Article  PubMed  CAS  Google Scholar 

  2. Geise, R. A., Peters, N. E., Dunnigan, A. N. N., & Milstein, S. (1996). Radiation doses during pediatric radiofrequency catheter ablation procedures. Pacing and Clinical Electrophysiology, 19, 1605–1611.

    Article  PubMed  CAS  Google Scholar 

  3. Perisinakis, K., Damilakis, J., Theocharopoulos, N., Manios, E., Vardas, P., & Gourtsoyiannis, N. (2001). Accurate assessment of patient effective radiation dose and associated detriment risk from radiofrequency catheter ablation procedures. Circulation, 104, 58–62.

    PubMed  CAS  Google Scholar 

  4. Kovoor, P., Ricciardello, M., Collins, L., Uther, J. B., & Ross, D. L. (1998). Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation, 98, 1534–1540.

    PubMed  CAS  Google Scholar 

  5. Kugler, J. D., Danford, D. A., Houston, M. A. K., & Felix, G. (1997). Radiofrequency catheter ablation for paroxysmal supraventricular tachycardia in children and adolescents without structural heart disease. American Journal of Cardiology, 80, 1438–1443.

    Article  PubMed  CAS  Google Scholar 

  6. Kugler, J. D., Danford, D. A., Houston, K. A., & Felix, G. (2002). Pediatric radiofrequency catheter ablation registry success, fluoroscopy time, and complication rate for supraventricular tachycardia: comparison of early and recent eras. Journal of Cardiovascular Electrophysiology, 13, 336–341.

    Article  PubMed  Google Scholar 

  7. Van Hare, G. F., Javitz, H., Carmelli, D., Saul, J. P., Tanel, R. E., Fischbach, P. S., et al. (2004). Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. Journal of Cardiovascular Electrophysiology, 15, 759–770.

    Article  PubMed  Google Scholar 

  8. Wagner, L. K., Eifel, P. J., & Geise, R. A. (1994). Potential biological effects following high X-ray dose interventional procedures. Journal of Vascular and Interventional Radiology, 5, 71–84.

    Article  PubMed  CAS  Google Scholar 

  9. Calkins, H., Niklason, L., Sousa, J., el-Atassi, R., Langberg, J., & Morady, F. (1991). Radiation exposure during radiofrequency catheter ablation of accessory atrioventricular connections. Circulation, 84, 2376–2382.

    PubMed  CAS  Google Scholar 

  10. Lindsay, B. D., Eichung, J. O., Ambos, H. D., & Cain, M. E. (1992). Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. American Journal of Cardiology, 70, 218–223.

    Article  PubMed  CAS  Google Scholar 

  11. Committee on the Biological Effects of Ionizing Radiations Board on Radiation Effects. Research Commission on Life Sciences. National Research Council. (1990) Health effects of exposure to low levels of ionizing radiation. BEIR V. Washington, DC: National Academy Press.

  12. Rotter, M., Takahashi, Y., Sanders, P., Haissaguerre, M., Jais, P., Hsu, L.-F., et al. (2005). Reduction of fluoroscopy exposure and procedure duration during ablation of atrial fibrillation using a novel anatomical navigation system. European Heart Journal, 26, 1415–1421.

    Article  PubMed  Google Scholar 

  13. Earley, M. J., Showkathali, R., Alzetani, M., Kistler, P. M., Gupta, D., Abrams, D. J., et al. (2006). Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: A prospective randomized trial. European Heart Journal, 27, 1223–1229.

    Article  PubMed  Google Scholar 

  14. Papagiannis, J., Tsoutsinos, A., Kirvassilis, G., Sofianidou, I., Koussi, T., Laskari, C., et al. (2006). Nonfluoroscopic catheter navigation for radiofrequency catheter ablation of supraventricular tachycardia in children. Pacing and Clinical Electrophysiology, 29, 971–978.

    Article  PubMed  Google Scholar 

  15. Drago, F., Silvetti, M. S., Pino, A., Grutter, G., Bevilacqua, M., & Leibovich, S. (2002). Exclusion of fluoroscopy during ablation treatment of right accessory pathway in children. Journal of Cardiovascular Electrophysiology, 13, 778–782.

    Article  PubMed  Google Scholar 

  16. Kammeraad, J., ten Cate, F. U., Simmers, T., Emmel, M., Wittkampf, F. H. M., & Sreeram, N. (2004). Radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia in children aided by the LocaLisa mapping system. Europace, 6, 209–214.

    Article  PubMed  Google Scholar 

  17. Dick, M. d., O’Connor, B. K., Serwer, G. A., LeRoy, S., & Armstrong, B. (1991). Use of radiofrequency current to ablate accessory connections in children. Circulation, 84, 2318–2324.

    PubMed  Google Scholar 

  18. Papez, A. L., Al-Ahdab, M., Dick, M. II, & Fischbach, P. S. (2006). Transcatheter cryotherapy for the treatment of supraventricular tachyarrhythmias in children: A single center experience. J Interv Card Electrophysiol, 15, 191–196.

    Article  PubMed  Google Scholar 

  19. Hirshfeld, J. W., Jr., Balter, S., Brinker, J. A., Kern, M. J., Klein, L. W., Lindsay, B. D., et al. (2004). ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. Journal of the American College of Cardiology, 44, 2259–2282.

    Article  PubMed  Google Scholar 

  20. Schueler, B. A., Julsrud, P. R., Gray, J. E., Stears, J. G., & Wu, K. Y. (1994). Radiation exposure and efficacy of exposure-reduction techniques during cardiac catheterization in children. American Journal of Radiology, 162, 173–177.

    CAS  Google Scholar 

  21. McFadden, S. L., Mooney, R. B., & Shepherd, P. H. (2002). X-ray dose and associated risks from radiofrequency catheter ablation procedures. British Journal of Radiology, 75, 253–265.

    PubMed  CAS  Google Scholar 

  22. Wittkampf, F. H. M., Wever, E. F. D., Derksen, R., Ramanna, H., Hauer, R. N. W., & Robles de Medina, E. O. (1999). Accuracy of the localisa system in catheter ablation procedures. Journal of Electrocardiology, 32, 7–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Papez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papez, A.L., al-Ahdab, M., Dick, M. et al. Impact of a computer assisted navigation system on radiation exposure during pediatric ablation procedures. J Interv Card Electrophysiol 19, 121–127 (2007). https://doi.org/10.1007/s10840-007-9148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-007-9148-3

Keywords

Navigation