Impact of a computer assisted navigation system on radiation exposure during pediatric ablation procedures

  • Andrew L. Papez
  • Mohamad al-Ahdab
  • Macdonald DickII
  • Peter S. Fischbach



During catheter ablation procedures, non-radiologic navigation systems may reduce fluoroscopic exposure and energy applications, as well as improve procedural success rates.


To examine the impact of a non-radiologic navigation system on ablation procedures in pediatric patients, the procedural characteristics and success rates prior to and following incorporation of the LocaLisa® (LL) navigation system into a pediatric electrophysiology laboratory were compared.


Between January 2000 and April 2005, 246 consecutive patients underwent catheter ablation for either Atrioventricular Reentry Tachycardia AVRT (168) or Atrioventricular Nodal Reentry Tachycardia AVNRT (78). Ablation procedures performed prior to LL (108) were compared to ablation procedures performed using LL (113). The first 25 patients using LL were censored to remove the bias of a learning curve.


There was no difference in demographic features between the two groups. Statistically significant decreases were found in the diagnostic (11.4 ± 6.1 min v 18.8 ± 9.8 min w/o LL), ablation (5.7 ± 10.3 vs 18.5 ± 20.1 min w/o LL) and total (17.2 ± 12.6 vs 37.3 ± 21.3 min w/o LL) fluoroscopy times for the LL group, as well as in the total number of energy applications (9.0 ± 8.5 vs 12.3 ± 12.2 w/o LL). Success rates were 99.1% w/ LL v 97.2% w/o LL (p = NS). No major complications were observed in either group.


The use of a computer assisted navigation system significantly decreased the diagnostic, ablation, and total fluoroscopy times, as well as the number of energy applications, without affecting procedural success or complication rates. Non-radiologic navigation systems reduce radiation exposure during transcatheter electrophysiologic procedures and thus lower the lifetime radiation cumulative risk, a goal particularly important in children.


Atrioventricular nodal reentrant tachycardia Atrioventricular reentrant tachycardia Catheter ablation Children Fluoroscopy Intracardiac Navigation LocaLisa® 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenthal, L. S., Mahesh, M., Beck, T. J., Saul, J. P., Miller, J. M., Kay, N., et al. (1998). Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. American Journal of Cardiology, 82, 451–458.PubMedCrossRefGoogle Scholar
  2. 2.
    Geise, R. A., Peters, N. E., Dunnigan, A. N. N., & Milstein, S. (1996). Radiation doses during pediatric radiofrequency catheter ablation procedures. Pacing and Clinical Electrophysiology, 19, 1605–1611.PubMedCrossRefGoogle Scholar
  3. 3.
    Perisinakis, K., Damilakis, J., Theocharopoulos, N., Manios, E., Vardas, P., & Gourtsoyiannis, N. (2001). Accurate assessment of patient effective radiation dose and associated detriment risk from radiofrequency catheter ablation procedures. Circulation, 104, 58–62.PubMedGoogle Scholar
  4. 4.
    Kovoor, P., Ricciardello, M., Collins, L., Uther, J. B., & Ross, D. L. (1998). Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation, 98, 1534–1540.PubMedGoogle Scholar
  5. 5.
    Kugler, J. D., Danford, D. A., Houston, M. A. K., & Felix, G. (1997). Radiofrequency catheter ablation for paroxysmal supraventricular tachycardia in children and adolescents without structural heart disease. American Journal of Cardiology, 80, 1438–1443.PubMedCrossRefGoogle Scholar
  6. 6.
    Kugler, J. D., Danford, D. A., Houston, K. A., & Felix, G. (2002). Pediatric radiofrequency catheter ablation registry success, fluoroscopy time, and complication rate for supraventricular tachycardia: comparison of early and recent eras. Journal of Cardiovascular Electrophysiology, 13, 336–341.PubMedCrossRefGoogle Scholar
  7. 7.
    Van Hare, G. F., Javitz, H., Carmelli, D., Saul, J. P., Tanel, R. E., Fischbach, P. S., et al. (2004). Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. Journal of Cardiovascular Electrophysiology, 15, 759–770.PubMedCrossRefGoogle Scholar
  8. 8.
    Wagner, L. K., Eifel, P. J., & Geise, R. A. (1994). Potential biological effects following high X-ray dose interventional procedures. Journal of Vascular and Interventional Radiology, 5, 71–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Calkins, H., Niklason, L., Sousa, J., el-Atassi, R., Langberg, J., & Morady, F. (1991). Radiation exposure during radiofrequency catheter ablation of accessory atrioventricular connections. Circulation, 84, 2376–2382.PubMedGoogle Scholar
  10. 10.
    Lindsay, B. D., Eichung, J. O., Ambos, H. D., & Cain, M. E. (1992). Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. American Journal of Cardiology, 70, 218–223.PubMedCrossRefGoogle Scholar
  11. 11.
    Committee on the Biological Effects of Ionizing Radiations Board on Radiation Effects. Research Commission on Life Sciences. National Research Council. (1990) Health effects of exposure to low levels of ionizing radiation. BEIR V. Washington, DC: National Academy Press.Google Scholar
  12. 12.
    Rotter, M., Takahashi, Y., Sanders, P., Haissaguerre, M., Jais, P., Hsu, L.-F., et al. (2005). Reduction of fluoroscopy exposure and procedure duration during ablation of atrial fibrillation using a novel anatomical navigation system. European Heart Journal, 26, 1415–1421.PubMedCrossRefGoogle Scholar
  13. 13.
    Earley, M. J., Showkathali, R., Alzetani, M., Kistler, P. M., Gupta, D., Abrams, D. J., et al. (2006). Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: A prospective randomized trial. European Heart Journal, 27, 1223–1229.PubMedCrossRefGoogle Scholar
  14. 14.
    Papagiannis, J., Tsoutsinos, A., Kirvassilis, G., Sofianidou, I., Koussi, T., Laskari, C., et al. (2006). Nonfluoroscopic catheter navigation for radiofrequency catheter ablation of supraventricular tachycardia in children. Pacing and Clinical Electrophysiology, 29, 971–978.PubMedCrossRefGoogle Scholar
  15. 15.
    Drago, F., Silvetti, M. S., Pino, A., Grutter, G., Bevilacqua, M., & Leibovich, S. (2002). Exclusion of fluoroscopy during ablation treatment of right accessory pathway in children. Journal of Cardiovascular Electrophysiology, 13, 778–782.PubMedCrossRefGoogle Scholar
  16. 16.
    Kammeraad, J., ten Cate, F. U., Simmers, T., Emmel, M., Wittkampf, F. H. M., & Sreeram, N. (2004). Radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia in children aided by the LocaLisa mapping system. Europace, 6, 209–214.PubMedCrossRefGoogle Scholar
  17. 17.
    Dick, M. d., O’Connor, B. K., Serwer, G. A., LeRoy, S., & Armstrong, B. (1991). Use of radiofrequency current to ablate accessory connections in children. Circulation, 84, 2318–2324.PubMedGoogle Scholar
  18. 18.
    Papez, A. L., Al-Ahdab, M., Dick, M. II, & Fischbach, P. S. (2006). Transcatheter cryotherapy for the treatment of supraventricular tachyarrhythmias in children: A single center experience. J Interv Card Electrophysiol, 15, 191–196.PubMedCrossRefGoogle Scholar
  19. 19.
    Hirshfeld, J. W., Jr., Balter, S., Brinker, J. A., Kern, M. J., Klein, L. W., Lindsay, B. D., et al. (2004). ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. Journal of the American College of Cardiology, 44, 2259–2282.PubMedCrossRefGoogle Scholar
  20. 20.
    Schueler, B. A., Julsrud, P. R., Gray, J. E., Stears, J. G., & Wu, K. Y. (1994). Radiation exposure and efficacy of exposure-reduction techniques during cardiac catheterization in children. American Journal of Radiology, 162, 173–177.Google Scholar
  21. 21.
    McFadden, S. L., Mooney, R. B., & Shepherd, P. H. (2002). X-ray dose and associated risks from radiofrequency catheter ablation procedures. British Journal of Radiology, 75, 253–265.PubMedGoogle Scholar
  22. 22.
    Wittkampf, F. H. M., Wever, E. F. D., Derksen, R., Ramanna, H., Hauer, R. N. W., & Robles de Medina, E. O. (1999). Accuracy of the localisa system in catheter ablation procedures. Journal of Electrocardiology, 32, 7–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Andrew L. Papez
    • 1
    • 2
  • Mohamad al-Ahdab
    • 1
  • Macdonald DickII
    • 1
  • Peter S. Fischbach
    • 1
  1. 1.University of Michigan Congenital Heart Center, C.S. Mott Children’s HospitalUniversity of MichiganAnn ArborUSA
  2. 2.University of Michigan Congenital Heart CenterL1242 Women’s HospitalAnn ArborUSA

Personalised recommendations