Skip to main content
Log in

A Comment on ‘Cosmology and Convention’ by David Merritt

  • Discussion
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

In a recent article Merritt (2017) has claimed that current observational data provide “severe tests” falsifying the standard cosmological model (the Lambda-Cold-Dark-Matter model). Based on Popper’s idea of conventionalism, he concludes that the introduction of some essential components of the standard cosmological model—including dark matter and dark energy—are a consequence of conventionalist stratagems. In this article, I provide more recent discoveries and discussions showing that the standard cosmological model is not built on any conventionalist stratagem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The cosmological constant term was first suggested by Einstein as he believed that our universe is static. However, when observations indicated the expansion of the universe, he rejected this term and said that the introduction of the cosmological constant was the biggest blunder of his life.

  2. The cosmological constant predicted by particle physics is of the order 10120 times larger than the actual one. Although we still have no good theory to reconcile this discrepancy, inclusion of the cosmological constant has a strong theoretical ground.

  3. Although the CDM model cannot tell us what the dark matter particles are, observational results based on the CDM model can constrain or predict some important properties of dark matter particles (e.g. mass range, cross section). For example, the standard thermal CDM model predicts the annihilation cross section of dark matter particles = 3 × 10−26 cm3 s−1 (Profumo 2017, 58). For some particular dark matter candidates, the CDM model can constrain their mass range and the self-interaction cross section. These information can help find new particles in collider experiments.

  4. http://www.xenon1t.org/.

  5. In particle physics, baryons are composite subatomic particles made up of three quarks (e.g. protons). In cosmology, the term baryons usually include leptons (e.g. electrons).

  6. In cosmology, “cored density profile” means that the density approaches a constant when r is small.

References

  • Barbagallo, M., et al. (2016). The 7Be(n,α) 4He reaction and the cosmological lithium problem: measurement of the cross section in a wide energy range at n TOF (CERN). Physical Review Letters, 117(15), article id 152701.

  • Barreira, A., & Avelino, P. P. (2011). Anthropic versus cosmological solutions to the coincidence problem. Physical Review D, 83(10), article id 103001.

  • Bertone, G., Bozorgnia, N., Kim, J. S., et al. (2018). Identifying WIMP dark matter from particle and astroparticle data. Journal of Cosmology and Astroparticle Physics, 03, article id 026.

  • Bertone, G., & Hooper, D. (2018). A history of dark matter. Review of Modern Physics, 90(4), article id 45002.

  • Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. (2011). Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Monthly Notices of the Royal Astronomical Society, 415(1), L40–L44.

    Article  Google Scholar 

  • Brooks, A. M., Kuhlen, M., Zolotov, A., et al. (2013). A Baryonic solution to the missing satellites problem. The Astrophysical Journal, 765(1), article id 22.

  • Burkert, A. (2000). The structure and evolution of weakly self-interacting cold dark matter halos. The Astrophysical Journal, 534(2), L143–L146.

    Article  Google Scholar 

  • Burkert, A. (2015). The structure and dark halo core properties of dwarf spheroidal galaxies. The Astrophysical Journal, 808(2), article id 158.

  • Chan, M. H. (2013). Reconciliation of modified Newtonian dynamics and dark matter theory. Physical Review D, 88(10), article id 103501.

  • Chan, M. H. (2017). Analytic expressions for the dark matter-baryon relations. International Journal of Modern Physics D, 26(10), article id 1750118.

  • Cheng, T.-P. (2010). Relativity, gravitation and cosmology: A basic introduction. Oxford: Oxford University Press.

    Google Scholar 

  • Dawes, G. (2009). Theism and explanation. New York: Routledge.

    Google Scholar 

  • Daylan, T., et al. (2016). The characterization of the gamma-ray signal from the central milky way: A compelling case for annihilating dark matter. Physics of the Dark Universe, 12, 1–23.

    Article  Google Scholar 

  • de Blok, W. J. G. (2010). The core-cusp problem. Advances in Astronomy, 2010(1–2), article id 789293.

  • Desmond, H. (2017). A statistical investigation of the mass discrepancy acceleration relation. Monthly Notices of the Royal Astronomical Society, 464(4), 4160–4175.

    Article  Google Scholar 

  • Di Cintio, A., & Lelli, F. (2016). The mass discrepancy acceleration relation in a ΛCDM context. Monthly Notices of the Royal Astronomical Society, 456(1), L127–L131.

    Article  Google Scholar 

  • Di Mauro, M., Donato, F., Fornengo, N., et al. (2016). Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data. Journal of Cosmology and Astroparticle Physics, 05, article id 031.

  • Dunkel, J. (2004). On the relationship between modified Newtonian dynamics and dark matter. The Astrophysical Journal, 604(1), L37–L40.

    Article  Google Scholar 

  • Elbert, O. D., Bullock, J. S., Garrison-Kimmel, S., et al. (2015). Core formation in dwarf haloes with self-interacting dark matter: No fine-tuning necessary. Monthly Notices of the Royal Astronomical Society, 453(1), 29–37.

    Article  Google Scholar 

  • Fields, B. D. (2011). The Primordial lithium problem. Annual Review of Nuclear and Particle Science, 61, 47–68.

    Article  Google Scholar 

  • Freedman, W. L. (2017). Cosmology at a crossroads. Nature Astronomy, 1, article id 0121.

  • Freeland, E., & Wilcots, E. (2011). Intergalactic gas in groups of galaxies: Implications for dwarf spheroidal formation and the missing baryons problem. The Astrophysical Journal, 738(2), article id 145.

  • Governato, F., Zolotov, A., Pontzen, A., et al. (2012). Cuspy no more: How outflows affect the central dark matter and baryon distribution in Λ Cold Dark Matter galaxies. Monthly Notices of the Royal Astronomical Society, 422(2), 1231–1240.

    Article  Google Scholar 

  • Hou, S. Q., He, J. J., Parikh, A., et al. (2017). Non-extensive statistics solution to the cosmological lithium problem. The Astrophysical Journal, 834(2), article id 165.

  • Iocco, F., Pato, M., & Bertone, G. (2015). Evidence for dark matter in the inner Milky Way. Nature Physics, 11, 245–248.

    Article  Google Scholar 

  • Johansson, I. (1975). A critique of Karl Popper’s methodology. Stockholm: Akademiförlaget.

    Google Scholar 

  • Katz, H., Lelli, F., McGaugh, S. S., et al. (2017). Testing feedback-modified dark matter haloes with galaxy rotation curves: Estimation of halo parameters and consistency with ΛCDM scaling relations. Monthly Notices of the Royal Astronomical Society, 466(2), 1648–1668.

    Article  Google Scholar 

  • Kelvin, B. (1904). Baltimore lectures on molecular dynamics and the wave theory of light. https://archive.org/details/baltimorelecture00kelviala. Accessed 4 Jan 2019.

  • Keuth, H. (2005). The philosophy of Karl Popper. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kim, S. Y., Peter, A. H. G., & Hargis, J. R. (2018). Missing satellites problem: Completeness corrections to the number of satellite galaxies in the Milky Way are consistent with cold dark matter predictions. Physical Review Letters, 121(21), article id 211302.

  • Kuhn, T. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programs. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–196). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Lakatos, I. (1971). History of science and its rational reconstructions. In R. Buck & R. S. Cohen (Eds.), PSA 1970. Boston Studies in the Philosophy of Science (Vol. 8, pp. 91–136). Springer: Dordrecht.

    Google Scholar 

  • Landry, D., Bonamente, M., Giles, P., et al. (2013). Chandra measurements of a complete sample of x-ray luminous galaxy clusters: The gas mass fraction. Monthly Notices of Royal Astronomical Society, 433(4), 2790–2811.

    Article  Google Scholar 

  • Lelli, F., McGaugh, S. S., Schombert, J. M., et al. (2016). The relation between stellar and dynamical surface densities in the central regions of disk galaxies. The Astrophysical Journal Letters, 827, article id L19.

  • Ludlow, A. D., et al. (2017). Mass-discrepancy acceleration relation: A natural outcome of galaxy formation in cold dark matter halos. Physical Review Letters, 118(16), article id 161103.

  • McGaugh, S. S. (2004). The mass discrepancy-acceleration relation: Disk mass and the dark matter distribution. The Astrophysical Journal, 609(2), 652–666.

    Article  Google Scholar 

  • McGaugh, S. S. (2007). The halo by halo missing baryon problem. Proceedings of the International Astronomical Union, 3(S244), 136–145.

    Article  Google Scholar 

  • McGaugh, S. S., Lelli, F., & Schombert, J. M. (2016). Radial acceleration relation in rotationally supported galaxies. Physical Review Letters, 117(20), article id 201101.

  • Merritt, D. (2017). Cosmology and convention. Studies in History and Philosophy of Modern Physics, 57, 41–52.

    Article  Google Scholar 

  • Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 270, 365–370.

    Article  Google Scholar 

  • Milgrom, M. (2016). Universal modified newtonian dynamics relation between the baryonic and “dynamical” central surface densities of disc galaxies. Physical Review Letters, 117(14), article id 141101.

  • Moffat, J. W. (2006). Scalar-tensor-vector gravity theory. Journal of Cosmology and Astroparticle Physics, 03, 1–18.

    Article  Google Scholar 

  • Moore, B., et al. (1999). Dark matter substructure within galactic halos. The Astrophysical Journal, 524(1), L19–L22.

    Article  Google Scholar 

  • Natarajan, P., & Zhao, H. (2008). MOND plus classical neutrinos are not enough for cluster lensing. Monthly Notices of the Royal Astronomical Society, 389(1), 250–256.

    Article  Google Scholar 

  • Navarro, J. F., Frenk, C. S., & White, S. D. M. (1997). A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2), 493–508.

    Article  Google Scholar 

  • Navarro, J. F., et al. (2017). The origin of the mass discrepancy – acceleration relation in ΛCDM. Monthly Notices of the Royal Astronomical Society, 471(2), 1841–1848.

    Article  Google Scholar 

  • Nicastro, F., Elvis, M., Fiore, F., et al. (2005). Measured cosmological mass density in the WHIM: The solution to the ‘missing baryons’ problem. Advances in Space Research, 36(4), 721–726.

    Article  Google Scholar 

  • Ogiya, G., & Burkert, A. (2015). Re-examining the too-big-to-fail problem for dark matter haloes with central density cores. Monthly Notices of the Royal Astronomical Society, 446(3), 2363–2369.

    Article  Google Scholar 

  • Poincaré, H. (1902). La science et l’hypothèse. Paris: Ernest Flammarion.

    Google Scholar 

  • Poincaré, H. (1906). The milky way and the theory of gases. Popular Astronomy, 14, 475–488.

    Google Scholar 

  • Pointecouteau, E., Arnaud, M., & Pratt, G. W. (2005). The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile. Astronomy and Astrophysics, 435(1), 1–7.

    Article  Google Scholar 

  • Pontzen, A., & Governato, F. (2014). Cold dark matter heats up. Nature, 506(7487), 171–178.

    Article  Google Scholar 

  • Popper, K. (1959). The logic of scientific discovery. New York: Basic Books.

    Google Scholar 

  • Postnikov, S., Dainotti, M. G., Hernandez, X., et al. (2014). Nonparameteric study of the evolution of the cosmological equation of state with SNeIa, BAO, and High-Redshift GRBs. The Astrophysical Journal, 783(2), article id 126.

  • Profumo, S. (2017). An introduction to particle dark matter. London: World Scientific.

    Book  Google Scholar 

  • Read, J. I., & Erkal, D. (2018). Abundance matching with the mean star formation rate: There is no missing satellites problem in the milky way. arXiv:1807.07093.

  • Sanders, R. H. (2010). The dark matter problem: A historical perspective. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sanders, R. H., & McGaugh, S. S. (2002). Modified Newtonian dynamics as an alternatives to dark matter. Annual Review of Astronomy and Astrophysics, 40, 263–317.

    Article  Google Scholar 

  • Secchi, A. (1877). L’Astronomia in Roma nel pontificato di Pio IX: memoria. Roma: Tipografia della Pace.

    Google Scholar 

  • Simon, J. D., & Geha, M. (2007). The kinematics of the ultra-faint milky way satellites: Solving the missing satellite problem. The Astrophysical Journal, 670(1), 313–331.

    Article  Google Scholar 

  • Spergel, D. N., & Steinhardt, P. J. (2000). Observational evidence for self-interacting cold dark matter. Physical Review Letters, 84(17), 3760–3763.

    Article  Google Scholar 

  • Stadel, J., Potter, D., Moore, B., et al. (2009). Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo. Monthly Notices of the Royal Astronomical Society, 398(1), L21–L25.

    Article  Google Scholar 

  • Staley, K. W. (2014). An introduction to the philosophy of science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Trippe, S. (2013). Can massive gravity explain the mass discrepancy acceleration relation of disk galaxies? Journal of the Korean Astronomical Society, 46(3), 133–140.

    Article  Google Scholar 

  • Tully, R. B., & Fisher, J. R. (1977). A new method of determining distances to galaxies. Astronomy and Astrophysics, 54(3), 661–673.

    Google Scholar 

  • Verlinde, E. (2017). Emergent gravity and the dark universe. SciPost Physics, 2, article id 016.

  • Zel’dovich, Y. B. (1968). The cosmological constant and the theory of elementary particles. Soviet Physics Uspekhi, 11, 381–393.

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Tom Mongan and the referee for helpful comments on the manuscript. This work is partially supported by the Dean’s Research Grant from the Education University of Hong Kong (activity code 04301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Ho Chan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, M.H. A Comment on ‘Cosmology and Convention’ by David Merritt. J Gen Philos Sci 50, 283–296 (2019). https://doi.org/10.1007/s10838-019-09444-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-019-09444-y

Keywords

Navigation