Advertisement

Goethe’s Polarity of Light and Darkness

  • Olaf L. Müller
Article
  • 79 Downloads

Abstract

Rarely does research in the history and philosophy of science lead to new empirical results, but that is exactly what has happened in one of the essays of this special issue: Rang and Grebe-Ellis have developed new experimental techniques to perform measurements Goethe proposed 217 years ago. These measurements fit neatly with Goethe’s idea of polarity—his complementary spectrum is not only an optical, but also a thermodynamical counterpart of Newton’s spectrum. I use the new measurements, firstly, to argue against the asymmetries between light and darkness posited by Lyre and Schreiber; and, secondly, to explicate the alternative theory (the heterogeneity of darkness) that Goethe had introduced to urge scientific pluralism. In my replies to exegetical criticism by Böhler, Hampe and Zemplén, I show that the main goal of Goethe’s Farbenlehre was indeed to expose symmetries between light and darkness. Furthermore, I argue that it is worthwhile to focus on the experiments, arguments and hypotheses of the Farbenlehre, and not merely on rhetorical, narrative or stylistical aspects, as Böhler and Hampe would have it. Goethe’s criticism of Newton is often dismissed, but it is in fact surprisingly relevant today.

Keywords

Darkness Goethe HPS Light Newton Optics 

Notes

Acknowledgements

I would like to thank the editors for their patience, the contributors for far more critical and stimulating points than I could address here, the members of my HPS-colloquium for comments on an earlier and much too long version of my response, Matthias Rang and Johannes Grebe-Ellis for countless insights from physics—and Emanuel Viebahn for the English translation.

References

  1. Bielschowsky, A. (1907). The life of Goethe. Three volumes. Volume II: 17881815. From the Italian journey to the wars of liberation. (W. A. Cooper, Trans.). New York: Putnam.Google Scholar
  2. Böhler, M. (2018). Scientific writing between tabloid storrytelling, arcane formulaic hermetism, and narrative knowledge. Journal for General Philosophy of Science.  https://doi.org/10.1007/s10838-017-9396-6.Google Scholar
  3. Boyle, N. (2000). Goethe. The poet and the age. Revolution and renunciation (1790–1803) (Vol. 2). Oxford: Clarendon Press.Google Scholar
  4. Chang, H. (2002). Rumford and the reflection of radiant cold. Historical reflections and metaphysical reflexes. Physics in Perspective, 4(2), 127–169.CrossRefGoogle Scholar
  5. Eissler, K. R. (1963). Goethe. A psychoanalytic study. 1775–1786. Detroit: Wayne State University Press.Google Scholar
  6. Engelhardt, D. V. (1999). Goethes Farbenlehre und Morphologie in den Naturwissenschaften des 19. Jahrhunderts. Goethe-Jahrbuch, 116, 224–233.Google Scholar
  7. Falkenburg, B. (2015). Wohin fliegt die Eule der Minerva? Über die Verkehrung von Licht und Finsternis. Zeitschrift für philosophische Forschung, 69(4), 574–580.CrossRefGoogle Scholar
  8. Fox, R. (1974). The rise and fall of Laplacian physics. Historical Studies in the Physical Sciences, 4, 89–136.CrossRefGoogle Scholar
  9. Friedenthal, R. (2010). Goethe. His life & times. (John Nowell, Trans.). New Brunswick: Transaction Publishers.Google Scholar
  10. Goethe, J. W. V. (1887–1919). Goethes Werke. (“Weimarer Ausgabe”. Herausgegeben im Auftrag der Großherzogin Sophie von Sachsen). Weimar: Böhlau.Google Scholar
  11. Goethe, J. W. V. (1947–). Die Schriften zur Naturwissenschaft. (“Leopoldina-Ausgabe”. Herausgegeben im Auftrage der Deutschen Akademie der Naturforscher (Leopoldina); D. Kuhn, R. Matthaei, W. Troll, L. Wolf, Eds.). Weimar: Böhlau.Google Scholar
  12. Goethe, J. W. V. (1988a). Polarity. In J. W. V. Goethe, Scientific Studies (pp. 155–6). (D. Miller, Ed. & Trans.). New York: Suhrkamp.Google Scholar
  13. Goethe, J. W. V. (1988b). Theory of color. Didactic Section. In J. W. V. Goethe, Scientific studies (pp. 157–298). (D. Miller, Ed. & Trans.). New York: Suhrkamp.Google Scholar
  14. Goethe, J. W. V. (2016). “Exposure of Newton’s theory”. A polemic on Newton’s theory of light and colour. (M. Duck & M. Petry, Trans.). London: Imperial College Press.Google Scholar
  15. Hampe, M. (2018). Deciding staged battles of the past: On the rhetorics of Olaf Müller’s historical philosophy of science. Journal for General Philosophy of Science.  https://doi.org/10.1007/s10838-017-9397-5.Google Scholar
  16. Herschel, W. (1800). Experiments on the solar, and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Philosophical Transactions , 90(2), 293–326 & 90(3), 437–538.Google Scholar
  17. Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  18. Lande, J. B. (2017). Review. Olaf L. Müller. Mehr Licht: Goethe mit Newton im Streit um die Farben. Goethe Yearbook, 24, 292–293.CrossRefGoogle Scholar
  19. Lohne, J. A. (1961). Newton’s “proof” of the sine law and his mathematical principles of colors. Archive for History of Exact Sciences, 1(4), 389–405.CrossRefGoogle Scholar
  20. Ludwig, E. (1928). Goethe. The history of a man. 17491832. (E. C. Mayne, Trans.). New York: Blue Ribbon Books.Google Scholar
  21. Lyre, H. (2018). Newton, Goethe and the alleged underdetermination of ray optics. Journal for General Philosophy of Science.  https://doi.org/10.1007/s10838-017-9392-x.Google Scholar
  22. Müller, I. (1999). Goethes Farbenlehre und Morphologie in den Naturwissenschaften des 20. Jahrhunderts. Goethe-Jahrbuch, 116, 234–244.Google Scholar
  23. Müller, O. (2016). Prismatic equivalence. A new case of underdetermination. Goethe versus Newton on the prism experiments. British Journal for the History of Philosophy, 24(2), 322–346.Google Scholar
  24. Müller, O. (2017a). Erkenntnistheorie mit sprachphilosophischen Mitteln. Wie können wir ausschließen, dass alles nur geträumt ist? In E. Schürmann, S. Spanknebel, & H. Wittwer (Eds.), Formen und Felder des Philosophierens. Konzepte, Methoden, Disziplinen (pp. 142–159). Freiburg: Alber.Google Scholar
  25. Müller, O. (2017b). Goethe contra Newton on colours, light, and the philosophy of science. In M. Silva (Ed.), How colours matter for philosophy (pp. 71–93). New York: Springer.Google Scholar
  26. Müller, O. (2019). Goethes polares Forschungsprogramm in der Optik (unpublished manuscript).Google Scholar
  27. Newton, I. (1964). Optics: Or, a treatise of the reflections, refractions, inflections and colours of light. In I. Newton, Opera quae exstant omnia. Band 4 (pp. 1–264). (S. Horsley, Ed.). Stuttgart: Frommann.Google Scholar
  28. Planck, M. (1993). The unity of the physical universe. In M. Planck (Ed.), A survey of physical theory (pp. 1–26). New York: Dover.Google Scholar
  29. Rang, M., & Grebe-Ellis, J. (2018). Power area density in inverse spectra. Journal for General Philosophy of Science.  https://doi.org/10.1007/s10838-017-9394-8.Google Scholar
  30. Ritter, J. W. (1806). Bemerkungen zu Herschel’s neueren Untersuchungen über das Licht. In J. W. Ritter, Physisch-Chemische Abhandlungen in chronologischer Folge. Zweyter Band (pp. 81–107). Leipzig: Reclam.Google Scholar
  31. Ritter, J. W. (1808). Schreiben des Geh. Rath von Goethe an J. W. Ritter, Herschel’s thermometrische Versuche in den Farben des Lichts betreffend. Journal für die Chemie, Physik und Mineralogie , 6(4), 719–729, 759.Google Scholar
  32. Ritter, J. W. (1810). Fragmente aus dem Nachlass eines jungen Physikers. Ein Taschenbuch für Freunde der Natur. Erstes Baendchen. Heidelberg: Mohr und Zimmer.Google Scholar
  33. Schreiber, A. (2018). Metameric whiteness and absence of causal factors. Journal for General Philosophy of Science.  https://doi.org/10.1007/s10838-017-9393-9.Google Scholar
  34. Seidler, E. (2012). “… keine vier Wochen eigentliches Behagen …” Goethes Leiden und Krankheiten. Acta Historica Leopoldina, 59, 9–28.Google Scholar
  35. Shapiro, A. E. (1979). Newton’s “achromatic” dispersion law: theoretical background and experimental evidence. Archive for History of Exact Sciences, 21(2), 91–128.CrossRefGoogle Scholar
  36. Sharpe, L. (2002). Introduction. In L. Sharpe (Ed.), The Cambridge companion to Goethe (pp. 1–5). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Smith, D. Y., Inokuti, M., & Karstens, W. (2001). A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors. Journal of Physics: Condensed Matter, 13(17), 3883–3893.Google Scholar
  38. Steinle, F. (2006). “Das Nächste ans Nächste reihen”. Goethe, Newton und das Experiment. In J. Grebe-Ellis & F. Theilmann (Eds.), Open eyes 2005. Ansätze und Perspektiven der phänomenologischen Optik. Beiträge zur Fachtagung vom 58. September 2005 im Institut für Physik der Humboldt-Universität zu Berlin (pp. 179–202). Berlin: Logos.Google Scholar
  39. Thompson, B. (1804). An enquiry concerning the nature of heat, and the mode of its communication. Philosophical Transactions, 94(1), 77–182.Google Scholar
  40. Williams, J. R. (2002). Goethe the poet. In L. Sharpe (Ed.), The Cambridge companion to Goethe (pp. 42–65). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Wünsch, C. E. (1808). Versuche über die vermeinte Sonderung des Lichts der Sonnenstrahlen von der Wärme derselben. Journal für die Chemie, Physik und Mineralogie, 6(4), 597–632.Google Scholar
  42. Zemplén, G. (2018). Theory-containment in controversies: Neurath & Müller on Newton, Goethe, and underdetermination. Journal for General Philosophy of Science.  https://doi.org/10.1007/s10838-017-9391-y.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for PhilosophyHumboldt University BerlinBerlinGermany

Personalised recommendations