Journal for General Philosophy of Science

, Volume 35, Issue 2, pp 313–329 | Cite as

Der Rabe und der Bayesianist

  • Mark Siebel


The Raven and the Bayesian. As an essential benefit of their probabilistic account of confirmation, Bayesians state that it provides a twofold solution to the ravens paradox. It is supposed to show that (i) the paradox’s conclusion is tenable because a white shoe only negligibly confirms the hypothesis that all ravens are black, and (ii) the paradox’s first premise is false anyway because a black raven can speak against the hypothesis. I argue that both proposals are not only unable to solve the paradox, but also point to severe difficulties with Bayesianism. The former does not make the conclusion acceptable, and it entails the bizarre consequence that a great amount of non-black non-ravens substantially confirms the ravens hypothesis. The latter does not go far enough because there is a variant of the first premise which follows from Bayesianism and implies a weaker, but nevertheless untenable, variant of the conclusion.

Key words

Bayesianismus Rabenparadox Wahrscheinlichkeit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, H. G.: 1958, The Paradoxes of Confirmation‘, The British Journal for the Philosophy of Science 9, 227–233.CrossRefGoogle Scholar
  2. Ayer, A.: 1972, Probability and Evidence, Macmillan, London & Basingstoke.CrossRefGoogle Scholar
  3. Earman, J.: 1992, Bayes or Bust: A Critical Examination of Bayesian Confirmation Theory, MIT Press, Cambridge/M.Google Scholar
  4. Eells, E. & Fitelson, B.: 2002, ‘Symmetries and Asymmetries in Evidential Support’, Philosophical Studies 107, 129–142.CrossRefGoogle Scholar
  5. Fitelson, B.: 1999, ‘The Plurality of Bayesian Measures of Confirmation and the Problem of Measure Sensitivity’, Philosophy of Science 66(Supplement 3), 362–378.CrossRefGoogle Scholar
  6. Fitelson, B.: 2001, Studies in Bayesian Confirmation Theory, Dissertation, University of Wisconsin at Madison, online erhältlich auf
  7. Good, I. J.: 1967, ‘The White Shoe is a Red Herring’, The British Journal for the Philosophy of Science 17, 322.CrossRefGoogle Scholar
  8. Goodman, N.: 1983, Fact, Fiction, and Forecast, 4. Aufl., Harvard University Press, Cambridge/M.Google Scholar
  9. Hempel, C. G.: 1965, ‘Studies in the Logic of Confirmation‘, in Aspects of Scientific Explanation and other Essays in the Philosophy of Science, The Free Press, New York, 3–46; urspr. veröff. in Mind 54(1945), 1–26, 97–121.Google Scholar
  10. Horwich, P.: 1998, ‘Wittgensteinian Bayesianism’, in M. Curd & J. A. Cover (Hrsg.), Philosophy of Science: The Central Issues, Norton, New York & London, 607–624.Google Scholar
  11. Hosiasson-Lindenbaum, J.: 1940, ‘On Confirmation’, Journal of Symbolic Logic 5, 133– 148.CrossRefGoogle Scholar
  12. Howson, C. & Urbach, P.: 1993, Scientific Reasoning: The Bayesian Approach, 2. Aufl., Open Court, Chicago & Lasalle/Ill.Google Scholar
  13. Jaynes, E. T.: 1996, Probability Theory: The Logic of Science, Manuskript, online erhältlich auf (Das Buch erscheint 2003 bei Cambridge University Press. Die Seitenzahlen werden dann andere sein.)
  14. Lewis, D.: 1981, ‘A Subjectivist‘s Guide to Objective Chance‘, in R. C. Jeffrey (Hrsg.), Studies in Inductive Logic and Probability, University of California Press, Berkeley & Los Angeles, 263–293.Google Scholar
  15. Mackie, J. L.: 1963, ‘The Paradoxes of Confirmation’, The British Journal for the Philosophy of Science 13, 265–277.CrossRefGoogle Scholar
  16. Pears, D.: 1950, ‘Hypotheticals’, Analysis 10, 49–63.CrossRefGoogle Scholar
  17. Rosenkrantz, R.: 1977, Inference, Method, and Decision. Towards a Bayesian Philosophy of Science, Reidel, Dordrecht.CrossRefGoogle Scholar
  18. Salmon, W. C.: 1998, ‘Rationality and Objectivity in Science or Tom Kuhn meets Tom Bayes‘, in M. Curd & J. A. Cover (Hrsg.), Philosophy of Science: The Central Issues, Norton, New York & London, 551–583.Google Scholar
  19. Scheffler, I.: 1963, The Anatomy of Inquiry, Knopf, New York.Google Scholar
  20. Sober, E.: 1994, ‘No Model, no Inference: A Bayesian Primer on the Grue Problem‘, in D. Stalker (Hrsg.),Grue! The New Riddle of Induction, Open Court, Chicago, 225–240.Google Scholar
  21. Stove, D.: 1966, ‘Hempel’s Paradox’, Dialogue 4, 444–455.CrossRefGoogle Scholar
  22. Swinburne, R.: 1971, ‘The Paradoxes of Confirmation – A Survey’, American Philosophical Quarterly 8, 318–330.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Institut für Logik und Wissenschaftstheorieder Universität LeipzigLeipzig

Personalised recommendations