Diagnosis of Incipient Faults in Nonlinear Analog Circuits Based on High Order Moment Fractional Transform

Abstract

Considering the problem to diagnose incipient faults in nonlinear analog circuits, a novel approach of fault feature-extracting based on HMFT (high order moment fractional transform) of the component parameter change is proposed. Firstly, the equivalence circuit model is established according to the topological structure and the voltage sensitivity of the circuit under test (CUT). Then the HMFT of component parameter changes are derived, which are used as fault features. Finally, using the extracted features, incipient fault diagnosis is accomplished. The simulations illustrate the proposed method and show its effectiveness in the incipient fault recognition capability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Akay O, Boudreaux-Bartels GF (2001) Fractional convolution and correlation via operator methods and an application to detection of linear FM signals. IEEE Trans Signal Process 49(5):979–993

    Article  Google Scholar 

  2. 2.

    Ao Y, Shi Y, Zhang W, Li Y (2013) An approximate calculation of ration of normal variables and its application in analog circuit fault diagnosis. J Electron Test 29(4):555–565

    Article  Google Scholar 

  3. 3.

    Avargel Y, Cohen I (2009) Adaptive nonlinear system identification in the short-time Fourier transform domain. IEEE Trans Signal Process 57(10):3891–3904

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Avargel Y, Cohen I (2010) Modeling and identification of nonlinear systems in the short-time Fourier transform domain. IEEE Trans Signal Process 58(1):291–304

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Camarena-Martinez D, Valtierra-Rodriguez M, Garcia-Perez A, Osormio-Rios RA, Romero-Troncoso R (2014) Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors. Sci World J 908140:1–17

    Google Scholar 

  6. 6.

    Chen X, Xu X, Liu A, Mckeown MJ, Wang J (2018) The use of multivariate EMD and CCA for Denoising muscle artifacts from Few-Channel EEG recordings. IEEE Trans Instrum Meas 67(2):359–370

    Article  Google Scholar 

  7. 7.

    Deng Y, Chai G (2016) Soft fault feature extraction in nonlinear analog circuit fault diagnosis. Circuits Syst Signal Process 35(12):4220–4248

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Deng Y, Liu N (2017) Soft fault diagnosis in analog circuits based on bispectral models. J Electron Test 33(5):543–557

    MathSciNet  Article  Google Scholar 

  9. 9.

    Deng Y, Shi Y, Zhang W (2012) An approach to locate parametric faults in nonlinear analog circuits. IEEE Trans Instrum Meas 61(2):358–367

    Article  Google Scholar 

  10. 10.

    Dong H, Wang Z, Lam J, Gao H (2012) Fuzzy-model-based robust fault detection with stochastic mixed time delays and successive packet dropouts. IEEE Trans Syst Man Cybern 42(2):365–376

    Article  Google Scholar 

  11. 11.

    Golonek T, Machniewski J (2018) Analog circuit specification testing by means of Walsh–Hadamard transform and polymorphic regression supported by evolutionary computations. Circuits Syst Signal Process 37(7):2736–2771

    Article  Google Scholar 

  12. 12.

    Hamed B, Zhang YM, Hong H (2015) Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults. IEEE Trans Control Syst Technol 23(4):1351–1372

    Article  Google Scholar 

  13. 13.

    He W, He Y, Li B, Zhang C (2018) Analog circuit fault diagnosis via joint cross-wavelet singular entropy and parametric t-SNE. Entropy 20(8):604–623

    Article  Google Scholar 

  14. 14.

    Huang N. E., Shen Z., Long S. R., Wu M.C., Shih H.H., Zheng Q., Yen N., Tung C. C., Liu H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc: Mathematical Physical and Engineering Sciences, 903–995

  15. 15.

    Kinbangou AY, Favier G (2009) Identification of parallel-cascade wiener systems using joint diagonalization of third-order Volterra kernel slices. IEEE Signal Process Lett 16(3):188–191

    Article  Google Scholar 

  16. 16.

    Kroese DP, Sergey P, Rubinstein RY (2006) The crossentropy method for continuous multi- extremal optimization. Methodol Comput Appl Probab 8(3):383–407

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Li F, Wo PY (2002) Fault detection for linear analog IC-the method of short-circuits admittance parameters. IEEE Trans Circuits Syst I 49(1):105–108

    Article  Google Scholar 

  18. 18.

    Li Y, Chen S, Wang H, Shi Y (2009) Application of voltage sensitivity vector in analog circuit fault diagnosis. J Electron Meas Instru 23(6):29–33

    Article  Google Scholar 

  19. 19.

    Li HY, Gao HJ, Shi P (2014) Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7):1825–1834

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Li HY, Wang JH, Lam HK, Zhou Q, Du H (2016) Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans Syst Man Cybern 46(1):1–10

    Article  Google Scholar 

  21. 21.

    Liu M, Shi P, Zhang L, Zhao X (2011) Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Trans Circuits Syst I 58(11):2755–2764

    MathSciNet  Article  Google Scholar 

  22. 22.

    Liu Y, Wang Z, He X, Zhou D (2015) Filtering and fault detection for nonlinear systems with polynomial approximation. Automatica 54(4):348–359

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Long B, Li M, Wang H, Tian S (2013) Diagnostics of analog circuits based on LS-SVM using time domain features. Circuits Syst Signal Process 32(6):2683–2706

    MathSciNet  Article  Google Scholar 

  24. 24.

    Long B, Xian W, Li M, Wang H (2014) Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance. Neurocomputing 133(11):237–248

    Article  Google Scholar 

  25. 25.

    Luo H, Lu W, Wang Y, Wang L (2017) A new test point selection method for analog continuous parameter fault. J Electron Test 33(3):339–352

    Article  Google Scholar 

  26. 26.

    Ma Q, He Y, Zhou F, Song P (2018) Test point selection method for analog circuit fault diagnosis based on similarity coefficient. Math Probl Eng, Article No. 9714206, pp. 1–11

  27. 27.

    Majumdar S, Parthasarathy H (2010) Wavelet-based transistor parameter estimation. Circuits Syst Signal Process 29(5):953–970

    MATH  Article  Google Scholar 

  28. 28.

    McBride AC, Kerr FH (1987) On Namias’ fractional Fourier transforms. IMA J Appl Math 39(2):159–175

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Namias V (1980) The fractional order Fourier transform and its application to quantum mechanics. J Inst Math Appl 25(3):241–265

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Roh J, Abraham JA (2004) Subband filtering for time and frequency analysis of mixed-signal circuit testing. IEEE Trans Instrum Meas 53(2):602–611

    Article  Google Scholar 

  31. 31.

    Santhana B, Santhanam TS (2008) On discrete gauss-Hermite functions and eigenvectors of the discrete Fourier transforms. Signal Process 88(11):2738–2746

    MATH  Article  Google Scholar 

  32. 32.

    Shi Y, Deng Y, Zhang W (2013) Diagnosis of incipient faults in weak nonlinear analog circuits. Circuits Syst Signal Process 32(5):2151–2170

    MathSciNet  Article  Google Scholar 

  33. 33.

    Shin H, Park J, Abraham JA (2010) Spectral prediction for specification-based loopback test of embedded mixed-signal circuits. J Electron Test 26(1):73–86

    Article  Google Scholar 

  34. 34.

    Sindia S, Agrawal VD, Singh V (2011) Test and diagnosis of analog circuits using moment generating functions. In: Proc. Asian Test Symposium, pp. 371–376

  35. 35.

    Sindia S, Agrawal VD, Singh V (2011) Testing linear and non-linear analog circuits using moment generating functions. In: Proc. 12th Latin American Test Workshop, pp. 1–6

  36. 36.

    Trevor GB, Rafik AG, Franck B (2009) Nonlinear system identification using a subband adaptive Volterra filter. IEEE Trans Instrum Meas 58(5):1389–1397

    Article  Google Scholar 

  37. 37.

    Walles-Novo R, Rangel-Magdaleno J, Ramires-Cortes JM, Peregrina-Barreto H, Morales-Caporal R (2015) Empirical mode decomposition analysis for broken – bar detection on squirrel cage induction motors. IEEE Trans Instrum Meas 64(5):1118–1128

    Article  Google Scholar 

  38. 38.

    Wang P, Yang SY (2005) A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math. IEEE Trans Circuits Syst I 52(10):2118–2127

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Wang T, Gao HJ, Qiu J (2016) A combined fault-tolerant and predictive control for network-based industrial processes. IEEE Trans Ind Electron 63(4):2529–2536

    Google Scholar 

  40. 40.

    Xu LJ, Huang JG, Wang HJ, Long B (2010) A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM. Circuits Syst Signal Process 29(4):577–600

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Yang C, Yang J, Liu Z, Tian S (2014) Complex field fault modeling-based optimal frequency selection in linear analog circuit fault diagnosis. IEEE Trans Instrum Meas 63(4):813–825

    Article  Google Scholar 

  42. 42.

    Zeller M, Kellermann W (2010) Fast and robust adaptation of DFT-domain Volterra filters in diagonal coordinates using iterated coefficient updates. IEEE Trans Signal Process 58(3):1589–1604

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Zhang XD (2011) Sensor bias fault detection and isolation in a class of nonlinear uncertain systems using adaptive estimation. IEEE Trans Autom Control 56(5):1220–1226

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Zhang ZH, Yang GH (2017) Interval observer-based fault isolation for discrete-time fuzzy interconnected systems with unknown interconnections. IEEE Trans Cybern 47(9):2413–2424

    Article  Google Scholar 

  45. 45.

    Zhang J, Zhu N, Yano L, Yao Q, Lu Q (2007) A fault diagnosis approach for broken rotor bars based on EMD and envelope analysis. J China Univ Min Technol 17(2):205–209

    Article  Google Scholar 

  46. 46.

    Zhang W, Zhou L, Shi Y, Huang C, Li Y (2010) Soft – fault diagnosis of analog circuit with tolearance using FNLP. Metrol Meas Syst 17(3):349–362

    Article  Google Scholar 

  47. 47.

    Zhang C, He Y, Yuan L, He W, Xiang S (2016) A novel approach for diagnosis of analog circuit fault by using GMKL-SVM and PSO. J Electron Test 32(5):531–540

    Article  Google Scholar 

  48. 48.

    Zhang K, Jiang B, Yan X, Mao Z (2016) Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device. ISA Trans 63(3):49–59

    Article  Google Scholar 

  49. 49.

    Zhang K, Jiang B, Yan X, Mao Z (2019) Incipient fault detection for traction motors of high-speed railways using an interval sliding observer. IEEE Trans Intell Transp Syst 20(7):2703–2714

    Google Scholar 

  50. 50.

    Zhao G, Liu X, Zhang B, Liu Y, Niu G, Hu C (2018) A novel approach for analog circuit fault diagnosis based on deep belief network. Measurement 121(3):170–178

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers and the editors for their constructive comments and suggestions. This work is supported by support plan project of science and technology of Sichuan province, China (2017FZ0033).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Deng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: S. Sindia

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Chen, T. & Zhang, D. Diagnosis of Incipient Faults in Nonlinear Analog Circuits Based on High Order Moment Fractional Transform. J Electron Test (2020). https://doi.org/10.1007/s10836-020-05889-y

Download citation

Keywords

  • Nonlinear circuits
  • Incipient fault diagnosis
  • High order moment
  • Fractional transform