Journal of Electronic Testing

, Volume 28, Issue 5, pp 685–695 | Cite as

On the Use of Static Temperature Measurements as Process Variation Observable

  • Didac Gómez
  • Josep Altet
  • Diego Mateo


In this paper we present the use of static temperature measurements as process variation observable. Contrary to previously published thermal testing methods, the proposed methodology does not need an excitation signal, thus reducing test cost and improving built-in capabilities of thermal monitoring. The feasibility of the technique and a complete test methodology is presented using a narrowband LNA as example. Finally, a complete electro-thermal co-simulation test bench between the LNA and a differential temperature sensor embedded in the same silicon die is presented in order to validate the results. Results prove that RF figures of merit can be extracted from DC temperature measurements done without loading or exciting the RF circuit under test.


CMOS process variation RF built-in test Thermal monitoring RF thermal testing Design for manufacturability 



This work was supported by project ENIAC MODERN (Spanish MICINN PLE2009-0024) and TERASYSTEMS TEC2008-01856. D. Gómez acknowledges the support of an AGAUR FI2009 scholarship.


  1. 1.
    Abdallah L, Stratigopoulos HG, Kelma C, Mir S (2010) Sensors for built-in alternate RF test. In: Proc IEEE European Test Symposium (ETS) pp 49–54Google Scholar
  2. 2.
    Aldrete-Vidrio E, Mateo D, Altet J (2007) Differential temperature sensors fully compatible with a 0.35 um CMOS process. IEEE Trans Comp Pack Technol 30(4):618–626CrossRefGoogle Scholar
  3. 3.
    Aldrete-Vidrio E, Mateo D, Altet J, Salhi MA, Grauby S, Dilhaire S,Onabajo M, Silva-Martinez J (2010) Strategies for built-in characterization testing and performance monitoring of analog RF circuits with temperature measurements. Meas Sci Technol 21(7):075104(10 pp)Google Scholar
  4. 4.
    Barragán MJ, Fiorelli R, Leger G, Rueda A, Huertas JL (2011) Alternate test of LNAs through ensemble learning of On-Chip digital envelope signatures. Spring J Electron Test Theor Appl 27(3):277–288CrossRefGoogle Scholar
  5. 5.
    ChiangC, KawaJ (2007) Design for manufacturability and yield for nano-scale CMOSGoogle Scholar
  6. 6.
    Dabrowski JJ, Ramzan RM (2010) Built-in loopback test for IC RF transceivers. IEEE Trans Very Large Scale Integration (VLSI) Systems 18(6):933–946CrossRefGoogle Scholar
  7. 7.
    Das T, Gopalan A, Washburn C, Mukund PR (2005) Selfcalibration of input-match in RF front-end circuitry. IEEE Trans Circ Syst II Express Briefs 52(12):821–825CrossRefGoogle Scholar
  8. 8.
    Geis A, Rolain Y, Vandersteen G, Craninckx J (2010) A 0.045 mm2 0.1–6 GHz reconfigurable multi-band, multi-gain LNA for SDR. Radio Freq Integrated Circ Symp 2010 IEEE vol., no., pp 123–126, 23–25Google Scholar
  9. 9.
    Gomez D, Dufis C, Altet J, Mateo D, Gonzalez JL Electro-thermal coupling analysis methodology for RF circuits. Microelectron J. doi: 10.1016/j.mejo.2011.04.011, accepted for publication in Elsevier
  10. 10.
    Hassan H, Mohab A (2006) Impact of technology scaling and process variations on RF CMOS devices. Microelectron J 37:275–282CrossRefGoogle Scholar
  11. 11.
    Kivekas K, Parssinen A, Ryynanen J, Jussila J, Halonen K (2002) Calibration techniques of active BiCMOS mixers. IEEE J Solid State Circ 37(6):766–769CrossRefGoogle Scholar
  12. 12.
    NacEachern LA, Manku T (1998) A charge-injection method for Gilbert cell biasing. IEEE Canadian Confer Electric Compu Engineer 1998, vol.1, no., pp 365–368 vol.1, 24–28Google Scholar
  13. 13.
    Onabajo M, Altet J, Aldrete-Vidrio E, Mateo D, Silva-Martinez J (2011) Electro-thermal design procedure to observe RF circuit power and linearity characteristics with a homodyne differential temperature sensor. IEEE Trans Circ Syst Reg Papers 58(3):458–469MathSciNetCrossRefGoogle Scholar
  14. 14.
    Onabajo M, Gómez D, Aldrete-Vidrio E, Altet J, Mateo D, Silva-Martinez J (2011) Survey of robustness enhancement techniques for wireless systems-on-a-chip and study of temperature as observable for process variations. Spring J Electron Test Theor Appl 27(3):225–240CrossRefGoogle Scholar
  15. 15.
    Valdes-Garcia A, Venkatasubramanian R, Silva-Martinez J, Sanchez-Sinencio E (2008) A broadband CMOS amplitude detector for On-Chip RF measurements. IEEE Trans Instrum Meas 57(7):1470–1477CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electronic EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations