Advertisement

Journal of Electronic Testing

, Volume 27, Issue 2, pp 109–122 | Cite as

Construction and Analysis of Augmented Time Compactors

  • Emil Gizdarski
Article

Abstract

In this paper, a procedure for constructing time compactors based on a new 3-dimensional augmented product code is presented. Accordingly, augmented time compactors are constructed by assigning a unique triplet <x,y,z> to each scan chain and calculating at least four sets of parity check bits. Parity check bits of each set are XORed into stages of one or more multi-input shift registers. The proposed method allows constructing different classes of time compactors directly based on the coding theory. The constructed augmented time compactors outperform the most advanced time compactors of each respective class. All constructed compactor schemes are strictly defined and establish a clear baseline for future development in this area.

Keywords

Test-response compaction Space and time compactors Fault diagnosis Linear codes 

References

  1. 1.
    Bartenstein T, Heaberlin D, Huisman LM, Sliwinski D (2001) Diagnosing combinational logic designs using the single location at-a-time (SLAT) paradigm. In: Proc IEEE International Test Conference, pp 287–296Google Scholar
  2. 2.
    Benware B, Mrugalski G, Pogiel A, Rajski J, Solecki J, Tyszer J (2010) Diagnosis of failing scan cells through orthogonal response compaction. In: Proc IEEE European Test Symposium, pp 221–226Google Scholar
  3. 3.
    Cheng W-T, Sharma M, Rinderknecht T, Lai L, Hill C (2006) Signature based diagnosis for logic BIST. In: Proc IEEE International Test Conference, Paper 8.3Google Scholar
  4. 4.
    Cheng W-T, Tsai K-H, Huang Y, Tamarapalli N, Rajski J (2004) Compactor independent direct diagnosis. In: Proc IEEE Asian Test Symposium, pp 204–209Google Scholar
  5. 5.
    Chickermane V, Foutz B, Keller B (2004) Channel masking synthesis for efficient on-chip test compression. In: Proc IEEE International Test Conference, pp 452–461Google Scholar
  6. 6.
    Clouqueur T, Zarrineh K, Saluja KK, Fujiwara H (2005) Design and analysis of multiple weight linear compactors of responses containing unknown values. In: Proc IEEE International Test Conference, pp 1099–1108Google Scholar
  7. 7.
    Gizdarski E (2008) Constructing augmented multimode compactors. In: Proc IEEE VLSI Test Symposium, pp 29–34Google Scholar
  8. 8.
    Mazumder P (1993) Design of a fault-tolerant three-dimensional dynamic random-access memory with on-chip correcting circuit. In: IEEE Trans Comput 42(12):1453–1467CrossRefGoogle Scholar
  9. 9.
    McCluskey EJ, Burek D, Koenemann B, Mitra S, Patel J, Rajski J, Waicukauski JA (2003) Test data compression. In: IEEE Des Test Comput 20:76–87CrossRefGoogle Scholar
  10. 10.
    Mitra S, Kim KS (2002) X-Compact: An efficient response compaction technique for test cost reduction. In: Proc IEEE International Test Conference, pp. 311–320Google Scholar
  11. 11.
    Mitra S, Kim KS (2004) X-Compact: an efficient response compaction technique. In: IEEE Trans Comput Aided Des Integr Circ Syst 23(3):421–432CrossRefGoogle Scholar
  12. 12.
    Mitra S, Lumetta SS, Mitzenmacher M (2004) X-tolerant signature analysis. In: Proc International Test Conference, pp 432–441Google Scholar
  13. 13.
    Mrugalski G, Pogiel A, Rajski J, Tyszer J (2007) Fault diagnosis with convolutional compactors. In: IEEE Trans Comput Aided Des Integr Circ Syst 26(8):1478–1494, AugustGoogle Scholar
  14. 14.
    Naruse M, Porneranz I, Reddy SM, Kundu S (2003) On-chip compression of output responses with unknown values using LFSR reseeding. In: Proc IEEE International Test Conference, pp 1060–1068Google Scholar
  15. 15.
    Patel JH, Lumetta SS, Reddy SM (2003) Application of Saluja-Karpovsky compactors to test response with many unknowns. In: Proc IEEE VLSI Test Symposium, pp 107–112Google Scholar
  16. 16.
    Rajski W, Rajski J (2006) Modular compactor of test responses. In: Proc VLSI Test Symposium, pp 242–251Google Scholar
  17. 17.
    Rajski J, Tyszer J (2005) Synthesis of X-tolerant convolutional compactors. In: Proc IEEE VLSI Test Symposium, pp 114–119Google Scholar
  18. 18.
    Rajski J, Tyszer J, Mrugalski G, Cheng WT, Mukherjee N, Kassab M (2008) X-Press: two-stage X-tolerant compactor with programmable selector. In: IEEE Trans Comput Aided Des Integr Circ Syst 27(1):147–159Google Scholar
  19. 19.
    Rajski J, Tyszer J, Wang C, Reddy S (2003) Convolutional compaction of test responses. In: Proc IEEE International Test Conference, pp 745–754Google Scholar
  20. 20.
    Rajski J, Tyszer J, Wang C, Reddy SM (2005) Finite memory test response compactors for embedded test applications. In: IEEE Trans Comput Aided Des Integr Circ Syst 24(4):622–634Google Scholar
  21. 21.
    Saluja KK, Karpovsky M (1983) Testing computer hardware through data compression in space and time. In: Proc IEEE International Test Conference, pp 83–88Google Scholar
  22. 22.
    Savir J, McAnney WH (1988) Identification of failing tests with cycling registers. In: Proc IEEE International Test Conference, pp 322–328Google Scholar
  23. 23.
    Sharma M, Cheng W-T (2005) X-filter: Filtering unknowns from compacted test responses. In: Proc IEEE International Test Conference, pp 1090–1098Google Scholar
  24. 24.
    Tang Y, Wunderlich H-J, Vranken H, Hapke F, Wittke M, Engelke P, Polian I, Becker B (2004) X-masking during logic BIST and its impact on defect coverage. In: Proc IEEE International Test Conference, pp 442–451Google Scholar
  25. 25.
    Touba N (2007) X-canceling MISR – a X-tolerant methodology for compacting output responses with unknown using MISR. In: Proc IEEE International Test Conference, Paper 6.2Google Scholar
  26. 26.
    Wohl P, Waicukauski JA, Neuveux F, Gizdarski E (2010) Fully X-tolerant, very high scan compression. In: Proc AMC/IEEE Design Automation Conference, pp. 362–367Google Scholar
  27. 27.
    Wohl P, Waicukauski JA, Patel S, Hay C, Gizdarski E, Mathew B (2005) Hierarchical compactor design for diagnosis in deterministic logic BIST. In: Proc IEEE VLSI Test Symposium, pp 359–365Google Scholar
  28. 28.
    Wohl P, Waicukauski JA, Patel S, Maston G (2002) Effective diagnosis through interval unloads in a BIST environment. In: AMC/IEEE Design Automation Conference, pp 249–254Google Scholar
  29. 29.
    Wohl P, Waicukauski JA, Williams TW (2001) Design of compactors for signature-analyzers in built-in self-test. In: Proc IEEE International Test Conference, pp 54–63Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Synopsys Inc.Mountain ViewUSA

Personalised recommendations