Advertisement

Journal of Electronic Testing

, Volume 26, Issue 6, pp 599–619 | Cite as

On-Chip Delay Measurement Based Response Analysis for Timing Characterization

  • Ramyanshu Datta
  • Antony Sebastine
  • Ashwin Raghunathan
  • Gary Carpenter
  • Kevin Nowka
  • Jacob A. Abraham
Article

Abstract

We present techniques for response analysis for timing characterization, i.e., delay test and debug of Integrated Circuits (ICs), using on-chip delay measurement of critical paths of the IC. Delay fault are a major source of failure in modern ICs designed in Deep Sub-micron technologies, making it imperative to perform delay fault testing on such ICs. Delay fault testing schemes should enable detection of gross as well as small delay faults in such ICs to be efficient. Additionally there is a need for performing efficient and systematic silicon debug for timing related failures. The timing characterization techniques presented in this paper overcome the observability limitations of existing timing characterization schemes in achieving the aforementioned goals, thus enabling quick and efficient timing characterization of DSM ICs. Additionally the schemes have low hardware overhead and are robust in face of process variations.

Keywords

Delay faul testing Small delay defects Parametric failures Design for Test Design for Debug 

Notes

Acknowledgements

The authors would like to thank Whitney J. Townsend for helping us design the multipliers.

References

  1. 1.
    Abaskharoun N, Hafed M, Roberts GW (2001) Strategies for on-chip sub-nanosecond signal capture and timing measurements. In: International symposium oncircuits and systems, IEEE, pp 174–177Google Scholar
  2. 2.
    Artisan Components Inc (2002) TSMC 0.18 μm process 1.8 Standard Cell Library DatabookGoogle Scholar
  3. 3.
    Baker K, Gronthoud G, Lousberg M, Schanstra I, Hawkins C (1999) Defect-based delay testing of resisitive vias-contacts: a critical evaluation. In: International test conference, IEEE, pp 467–476Google Scholar
  4. 4.
    Balachandran H, Butler KM, Simpson N (2002) Facilitating rapid first silicon debug. In: International test conference, IEEE, pp 628–637Google Scholar
  5. 5.
    Balajee S, Majhi AK (1998) Automated AC (timing) characterization for digital circuit testing. In: International conference on VLSI design, IEEE, pp 374–377Google Scholar
  6. 6.
    Bazes M (1985) A novel precision MOS synchronous delay line. IEEE J Solid State Circuits 20(6):1265–1271CrossRefGoogle Scholar
  7. 7.
    Bazes M, Ashuri R (1992) A novel CMOS digital clock and data decoder. IEEE J Solid State Circuits 27(12):1934–1940CrossRefGoogle Scholar
  8. 8.
    Borkar S, Karnik T, Narendra S, Tschanz J, Keshavarzi A, De V (2003) Parameter variations and impact on circuits and microarchitecture. In: Design automation conference, IEEE, pp 338–342Google Scholar
  9. 9.
    Bota SA, Rosales M, Rossello JL, Segura J (2006) Low VDD vs. delay: is it really a good correlation metric for nanometer ICs. In: VLSI test symposium, IEEE, pp 358–363Google Scholar
  10. 10.
    Bowman KA, Duvall SG, Meindl JD (2002) Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J Solid State Circuits 37(2):183–190CrossRefGoogle Scholar
  11. 11.
    Cao Y, Sato T, Orshansky M, Sylvester D, Hu C (2000) New paradigm of predictive MOSFET and interconnect modelling for early circuit simulation. In: Custom integrated circuits conference, IEEE, pp 201–204Google Scholar
  12. 12.
    Chan AH, Roberts GW (2001) A synthesizable fast and high-resolution timing measurement device using a component-invariant vernier delay line. In: International test conference, IEEE, pp 858–867Google Scholar
  13. 13.
    Chan AH, Roberts GW (2002) A deep sub-micron timing measurement circuit using a single stage vernier delay line. In: Custom integrated circuits conference, IEEE, pp 77–80Google Scholar
  14. 14.
    Chang JT-Y, Mccluskey EJ (1996) Detecting delay flaws by very-low-voltage testing. In: International test conference, IEEE, pp 367–376Google Scholar
  15. 15.
    Chen P, Liu S-I, Wu J (1997) A low power high accuracy CMOS time-to-digital converter. In: International symposium on circuits and systems, IEEE, pp 281–284Google Scholar
  16. 16.
    Chen P, Liu S-I, Wu J (1997) Highly accurate cyclic CMOS time-to-digital converter with extremely low power consumption. IEEE Electron Lett 33(10):858–860CrossRefGoogle Scholar
  17. 17.
    Chen P, Liu S-I, Wu J (2000) A CMOS pulse-shrinking delay element for time interval measurement. IEEE Trans Circuits Syst II 47(9):954–958CrossRefGoogle Scholar
  18. 18.
    Cheng K-H, Jiang S-Y, Chen Z-S (2003) BIST for clock jitter measurements. In: International symposium on circuits and systems, IEEE, pp V 577–V 580Google Scholar
  19. 19.
    Christiansen J (1995) An integrated CMOS 0.15ns digital timing generator for TDCs and clock distribution systems. IEEE Trans Nucl Sci 42(4):753–757CrossRefGoogle Scholar
  20. 20.
    Dadda L (1965) Some schemes for parallel multipliers. Alta Freq 34:349–356Google Scholar
  21. 21.
    Das S, Roberts D, Lee S, Pant S, Blaauw D, Austin T, Flautner K, Mudge T (2006) A self-tuning DVS processor using delay-error detection and correction. IEEE J Solid State Circuits 41(4):792–804CrossRefGoogle Scholar
  22. 22.
    Datta R, Carpenter G, Nowka K, Abraham JA (2006) A scheme for on-chip timing characterization. In: VLSI test symposium, IEEE, pp 24–29Google Scholar
  23. 23.
    Datta R, Gupta R, Sebastine A, Abraham JA, Dabreu M (2004) TriScan: a novel DFT technique for CMOS path delay fault testing. In: International test conference, IEEE, pp 1118–1127Google Scholar
  24. 24.
    Datta R, Sebastine A, Abraham JA (2004) Delay fault testing and silicon debug using scan chains. In: European test symposium, IEEE, pp 46–51Google Scholar
  25. 25.
    Datta R, Sebastine A, Raghunathan A, Abraham JA (2004) On-chip delay measurement for silicon debug. In: Great lakes symposium on VLSI, ACM, pp 145–148Google Scholar
  26. 26.
    Dervisoglu B (1999) Design for testability: it is time to deliver it for time-to-market. In: International test conference, IEEE, pp 1102–1111Google Scholar
  27. 27.
    Dudek P, Szczepanski S, Hatfield JV (2000) A high-resolution CMOS time-to-digital converter utilizing a vernier delay line. IEEE J Solid State Circuits 35(2):240–247CrossRefGoogle Scholar
  28. 28.
    Duvall SG (2000) Statistical circuit modeling and optmization. In: International workshop on statistical metrology, IEEE, pp 56–63Google Scholar
  29. 29.
    Favalli M, Olivo P, Damiani M, Ricco B (1990) Novel design for testability schemes for CMOS IC’s. IEEE J Solid State Circuits 25(5):1239–1246CrossRefGoogle Scholar
  30. 30.
    Franco P, McCluskey EJ (1991) Delay testing of digital circuits by output waveform analysis. In: International test conference, IEEE, pp 798–807Google Scholar
  31. 31.
    Genat J-F (1992) High resolution time-to-digital converter. Nuclear Instruments and Methods in Physics Research, A315Google Scholar
  32. 32.
    Genat J-F, Rossel F (1988) Ultra high-speed time-to-digital converter. United States Patent no. 4719608Google Scholar
  33. 33.
    Gorbics MS, Kelly J, Roberts KM, Sumner RL (1997) A high-resolution multihit time-to-digital converter integrated circuit. IEEE Trans Nucl Sci 44(3):379–384CrossRefGoogle Scholar
  34. 34.
    Gray CT, Liu W, Noije WAV, Hughes TA, RKC III (1994) A sampling technique and its CMOS implementation with 1 Gb/s bandwidth and 25 ps resolution. IEEE J Solid State Circuits 29(3):340–349CrossRefGoogle Scholar
  35. 35.
    Hawkins C, Keshavarzi A, Segura J (2003) A view from the bottom: nanometer technology AC parametric failures—why, where, and how to detect. In: International symposium on defect and fault tolerance, IEEE, pp 267–276Google Scholar
  36. 36.
    Hsiao M-J, Huang J-R, Yang S-S, Chang T-Y (2001) A built-in timing parametric measurement unit. In: International test conference, IEEE, pp 315–322Google Scholar
  37. 37.
    Kinra A (1999) Towards reducing functional only fails for the UltraSPARC microprocessors. In: International test conference, IEEE, pp 147–154Google Scholar
  38. 38.
    Ljuslin C, Christiansen J, Marchioro A, Klingsheim O (1994) An integrated 16-channel CMOS time to digital converter. IEEE Trans Nucl Sci 41(4):1104–1108CrossRefGoogle Scholar
  39. 39.
    Maly W, Nigh P (1988) Built-in current testing - feasibility study. In: International conference on computer aided design, IEEE, pp 340–343Google Scholar
  40. 40.
    Mao W, Ciletti MD (1990) A variable observation time method for testing delay faults. In: Design automation conference, ACM/IEEE, pp 728–731Google Scholar
  41. 41.
    Maxwell P, Hartanto I, Bentz L (2000) Comparing functional and structural tests. In: International test conference, IEEE, pp 400–407Google Scholar
  42. 42.
    Miyazaki M, Ono G, Ishibashi K (2002) A 1.2-GIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias. IEEE J Solid State Circuits 37(2):210–217CrossRefGoogle Scholar
  43. 43.
    Naffziger S, Stackhouse B, Grutkowski T (2005) The implementation of a 2-core multi-threaded itanium processor. In: International solid state circuits conference, IEEE, pp 182–184Google Scholar
  44. 44.
    Nassif SR (2000) Modeling and forecasting of manufacturing variations. In: International workshop on statistical metrology, IEEE, pp 2–10Google Scholar
  45. 45.
    Needham W, Gollakota N (1996) DFT strategy for intel microprocessors. In: International test conference, IEEE, pp 396–399Google Scholar
  46. 46.
    Needham et al (1998) High volume microprocessor test escapes, an analysis of defects our tests are missing. In: International test conference, IEEE, pp 25–34Google Scholar
  47. 47.
    Parvathala P, Maneparambil K, Lindsay W (2002) FRITS - a microprocessor functional BIST method. In: International test conference, IEEE, pp 590–598Google Scholar
  48. 48.
    Pham D, Asano S, Bolliger M, Day M, Hofstee HP, Johns C, Kahle J, Kameyama A, Keaty J, Masubuchi Y, Riley M, Shippy D, Stasiak D, Suzuoki M, Wang M, Warnock J, Weitzel S, Wendel D, Yamazaki T, Yazawa K (2005) The design and implementation of a first generation CELL processor. In: International solid state circuits conference, IEEE, pp 184–186Google Scholar
  49. 49.
    Pramanick AK, Reddy SM (1989) On the computation of the ranges of detected delay fault sizes. In: International conference on computer aided design, IEEE, pp 126–129Google Scholar
  50. 50.
    Raahemifar K, Ahmadi M (2000) Design for testability techniques for detecting delay faults in CMOS/BiCMOS logic families. IEEE Trans Circuits Syst II 47(11):1279–1290CrossRefGoogle Scholar
  51. 51.
    Rahkonen T, Kostamovaara J (1990) Pulsewidth measurement using an integrated pulse shrinking delay line. In: International symposium on circuits and systems, IEEE, pp 578–581Google Scholar
  52. 52.
    Rahkonen T, Kostamovaara J, Saynajakangas S (1988) CMOS ASIC devices for the measurement of short time intervals. In: International symposium on circuits and systems, IEEE, pp 1593–1596Google Scholar
  53. 53.
    Rahkonen T, Kostamovaara JT (1993) The use of CMOS delay lines for digitization of short time intervals. IEEE J Solid State Circuits 28(8):887–894CrossRefGoogle Scholar
  54. 54.
    Rahkonen T, Malo E, Kostamovaara J (1996) A 3V fully integrated digital FM demodulator based on a CMOS pulse-shrinking delay line. In: International symposium on circuits and systems, IEEE, pp 572–575Google Scholar
  55. 55.
    Raisanen-Ruotsalainen E, Rahkonen T, Kostamovaara J (1995) A low-power CMOS time-to-digital converter. IEEE J Solid State Circuits 30(9):984–990CrossRefGoogle Scholar
  56. 56.
    Raychowdhury A, Ghosh S, Bhunia S, Ghosh D, Roy K (2005) A novel delay fault testing methodology using on-chip low overhead delay measurement hardware at strategic test points. In: European test symposium, IEEE, pp 108–113Google Scholar
  57. 57.
    Sachdev M, Janssen P, Zieren V (1998) Defect detection with transient current testing and its potential for deep sub-micron CMOS ICs. In: International test conference, IEEE, pp 204–213Google Scholar
  58. 58.
    Sasaki O, Taniguchi T, Ohska TK, Mori H, Nonaka T, Kaminishi K, Tsukuda A, Nishimura H, Takeda M, Kawakami Y (1989) 1.2ghz GaAs shift register IC for dead-time-less TDC application. IEEE Trans Nucl Sci 36(1):512–516CrossRefGoogle Scholar
  59. 59.
    Savir J (1992) Skewed load transition test: part I, calculus. In: International test conference, IEEE, pp 705–713Google Scholar
  60. 60.
    Savir J (1992) Skewed load transition test: part II, coverage. In: International test conference, IEEE, pp 714–722Google Scholar
  61. 61.
    Savir J (1994) On broad-side delay test. In: VLSI test symposium, IEEE, pp 284–290Google Scholar
  62. 62.
    Segura J, Keshavarzi A, Soden J, Hawkins C (2002) Parametric failures in CMOS ICs - a defect-based analysis. In: International test conference, IEEE, pp 90–99Google Scholar
  63. 63.
    Silicon Ensemble. Auto place and route toolGoogle Scholar
  64. 64.
    Stevens A, Vanberg RP, Spiegel JVD, Williams HH (1989) A Time-to-voltage converter and analog memory for colliding beam detectors. IEEE J Solid State Circuits 24(6):1748–1752CrossRefGoogle Scholar
  65. 65.
    Stojanovic V, Oklobdzija V (1999) Comparative analysis of master-slave latches and flip-flops for high-performance and low power systems. IEEE J Solid State Circuits 34(4):536–548CrossRefGoogle Scholar
  66. 66.
    Su C, Chen Y-T, Huang M-J, Chen G-N, Lee C-L (2000) All digital built-in delay and crosstalk measurement for on-chip buses. In: Design automation and test in Europe conference and exhibition, IEEE, pp 527–531Google Scholar
  67. 67.
    Synopsis Inc. Primetime Reference (2000) Version 2000.11Google Scholar
  68. 68.
    Tam S, Limaye RD, Desai UN (2004) Clock generation and distribution for the 130-nm itanium 2 processor with 6-MB on-die L3 cache. IEEE J Solid State Circuits 39(4):636–642CrossRefGoogle Scholar
  69. 69.
    Tisa S, Lotito A, Giudice A, Zappa F (2003) Monolithic time-to-digital converter with 20ps resolution. In: European solid state circuits conference, IEEE, pp 465–468Google Scholar
  70. 70.
    University of Texas at Austin. EE382M VLSI-2 class notes. http://www.ece.utexas.edu/~mcdermot. Accessed 2003
  71. 71.
    Vermeulen B, Goel SK (2002) Design for debug: catching design errors in digital chips. IEEE Des Test Comput 19(3):37–45CrossRefGoogle Scholar
  72. 72.
    Wallace C (1964) A suggestion for a fast multiplier. IEEE Trans Comput 13:14–17MATHCrossRefGoogle Scholar
  73. 73.
    Wood TJ (1999) The test and debug features of the AMD-K7TM microprocessor. In: International test conference, IEEE, pp 130–136Google Scholar
  74. 74.
    Wu WC, Lee CL, Wu MS, Chen JE, Abadir MS (2000) Oscillation ring delay test for high performance microprocessors. J Electron Test: Theory Appl 16(1–2):147–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ramyanshu Datta
    • 1
  • Antony Sebastine
    • 1
  • Ashwin Raghunathan
    • 1
  • Gary Carpenter
    • 2
  • Kevin Nowka
    • 2
  • Jacob A. Abraham
    • 1
  1. 1.Computer Engineering Research CenterThe University of Texas at AustinAustinUSA
  2. 2.IBM ResearchAustinUSA

Personalised recommendations