Advertisement

Journal of Electronic Testing

, Volume 23, Issue 4, pp 341–355 | Cite as

IEEE Standard 1500 Compatible Oscillation Ring Test Methodology for Interconnect Delay and Crosstalk Detection

  • Katherine Shu-Min Li
  • Chung-Len Lee
  • Chauchin Su
  • Jwu E Chen
Article

Abstract

A novel oscillation ring (OR) test scheme and architecture for testing interconnects in SOC is proposed and demonstrated. In addition to stuck-at and open faults, this scheme can also detect delay faults and crosstalk glitches, which are otherwise very difficult to be tested under the traditional test schemes. IEEE Std. 1500 wrapper cells are modified to accommodate the test scheme. An efficient algorithm is proposed to construct ORs for SOC based on a graph model. Experimental results on MCNC benchmark circuits have been included to show the effectiveness of the algorithm. In all experiments, the scheme achieves 100% fault coverage with a small number of tests.

Keywords

oscillation ring (OR) test scheme interconnect test SOC testing stuck-at faults open faults delay faults crosstalk glitches IEEE P1500 wrapper cell design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS), 2001.Google Scholar
  2. 2.
    W. Chen, S.K. Gupta, and M.A. Breuer, “Analytic Model for Crosstalk Delay and Pulse Analysis under Non-Ideal Inputs,” Proc. Int’l Test Conf., 1997, pp. 809–818.Google Scholar
  3. 3.
    S. Irajpour, S. Nazarian, L. Wang, S.K. Gupta, and M.A. Breuer, “Analyzing Crosstalk in the Presence of Weak Bridge Defects,” Proc. VLSI Test Symp., 2003, pp. 385–392.Google Scholar
  4. 4.
    K.-T. Cheng, S. Dey, M. Rodgers, and K. Roy, “Test Challenges for Deep Sub-Micron Technologies,” Proc. Design Automation Conf., 2000, pp. 142–149.Google Scholar
  5. 5.
    K.T. Lee, C. Nordquist, and J.A. Abraham, “Automatic Test Pattern Generation for Crosstalk in Digital Circuits,” Proc. VLSI Test Symp., 1998, pp. 34–39.Google Scholar
  6. 6.
    P.B. Sabet and F. Ilponse, “A Model for Crosstalk Noise Evaluation in Deep Submicron Processes,” Proc. Int’l Symp. on Quality Electronic Design, 2001, pp. 139–144.Google Scholar
  7. 7.
    J. Cong, T. Kong, and Z.D. Pan, “Buffer Block Planning for Interconnect-Driven Floorplanning,” Proc. Int’l Conf. Computer-aided Design, 1999, pp. 358–363.Google Scholar
  8. 8.
    J. Cong, D.Z. Pan, and P.V. Srinivas, “Improved Crosstalk Modeling for Noise Constrained interconnect Optimization,” Proc. Asia South Pacific Design Automation Conf., 2001, pp. 373–378.Google Scholar
  9. 9.
    K.S.-M. Li, Y.-H. Cherng, and Y.-W. Chang, “Noise-Aware Buffer Planning for Interconnect-Driven Floorplanning,” Proc. Asia South Pacific Design Automation Conf., Jan. 2003, pp. 423–426.Google Scholar
  10. 10.
    J.A. Sainz, M. Roca, R. Munoz, J.A. Maiz, and L.A. Aguado, “A Crosstalk Sensor Implementation for Measuring Interferences in Digital CMOS VLSI Circuits,” Proc. On-Line Testing Workshop, 2000, pp. 45–51.Google Scholar
  11. 11.
    F. Caignet, S.D.-B. Dhia, and E. Sicard, “On the Measurement of Crosstalk in Integrated Circuits,” IEEE Trans. VLSI Systems, vol. 8, no. 5, pp. 606–609, Oct. 2000.CrossRefGoogle Scholar
  12. 12.
    S. Bose, P. Agrawal, and V.D. Agrawal, “A Rated-clock Test Method for Path Delay Faults,” IEEE Trans. on VLSI Systems, vol. 6, no. 2, pp. 323–331, 1998.CrossRefGoogle Scholar
  13. 13.
    K.-T. Cheng and H.-C. Chen, “Classification and Identification of Nonrobust Untestable Path Delay Faults,” IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, vol. 15, no. 8, pp. 845–853, 1996.CrossRefGoogle Scholar
  14. 14.
    H.B. Bakoglu, Circuit, Interconnections, and Packaging for VLSI, Reading, MA: Addison-Wesley, 1990.Google Scholar
  15. 15.
    W.K. Kautz, “Testing of Faults in Wiring Interconnects,” IEEE Trans. Computers, vol. C-23, no. 4, pp. 358–363, Apr. 1974.CrossRefGoogle Scholar
  16. 16.
    P. Goel and M.T. McMahon, “Electronic Chip in Place Test,” Proc. Int’l Test Conf., 1982, pp. 83–90.Google Scholar
  17. 17.
    P.T. Wagner, “Interconnect Testing with Boundary Scan,” Proc. Int’l Test Conf., 1987, pp. 52–57.Google Scholar
  18. 18.
    C.W. Yau and N. Jarwala, “A Unified Theory for Designing Optimal Test Generation and Diagnosis Algorithms for Board Interconnects,” Proc. Int’l Test Conf., 1989, pp. 71–77.Google Scholar
  19. 19.
    F. DaSilva, Y. Zorian, L. Whetsel, K. Arabi, and R. Kapur, “Overview of the IEEE P1500 Standard,” Proc. Int’l Test Conf., 2003, pp. 988–997.Google Scholar
  20. 20.
    E.J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti, and Y. Zorian, “On IEEE P1500 Standard for Embedded Core Test,” Journal of Electronic Testing (JETTA), vol. 18, no. 4–5, pp. 365–383, Aug. 2002.CrossRefGoogle Scholar
  21. 21.
    M. Kaneko and K. Sakaguchi, “Oscillation Fault Diagnosis for Analog Circuits Based on Boundary Search with Perturbation Model,” Proc. Int’l Symp. Circuits and Systems, 1994, pp. 93–96.Google Scholar
  22. 22.
    K. Arabi and B. Kaminska, “Oscillation-Based Test Strategy for Analog and Mixed-Signal Integrated Circuits,” Proc. VLSI Test Symp., 1996, pp. 476–482.Google Scholar
  23. 23.
    Z.M. Santo, F. Novak, and S. Macek, “Design of Oscillation-Based Test Structures of Active RC Filters,” IEE Proc. Circ. Devices Syst., vol. 147, no. 5, pp. 295–302, 2000.Google Scholar
  24. 24.
    G. Huertas, D. Vazquez, E.J. Peralias, A. Rueda, and J.L. Huertas, “Practical Oscillation-Based Test of Integrated Filters,” IEEE Design & Test Computers, vol. 19, no. 6, pp. 64–72, 2002.CrossRefGoogle Scholar
  25. 25.
    W.C. Wu, C.L. Lee, M.S. Wu, J.E. Chen, and M. Abadir, “Oscillation Ring Delay Test for High Performance Microprocessor,” J. Electron. Test. (JETTA), vol. 16, no. 1–2, pp. 147–155, 2000.CrossRefGoogle Scholar
  26. 26.
    M.-S. Wu, C.L. Lee, C.P. Chang, and J.E. Chen, “A Testing Scheme for Crosstalk Faults Based on the Oscillation Test Signal,” Proc. Asian Test Symp., 2002, pp. 170–175.Google Scholar
  27. 27.
    C. Su and W. Tseng, “Configuration Free SoC Interconnect BIST Methodology,” Proc. Int’l Test Conf., Nov. 2001, pp. 1033–1038.Google Scholar
  28. 28.
    C. Su, Y.-T. Chen, M.-J. Huang, G.-N. Chen, and C.-L. Lee, “All Digital Built-In Delay and Crosstalk Measurement for On-Chip Buses,” Proc. Design, Automation, and Test in Europe, Mar. 2000, pp. 527–531.Google Scholar
  29. 29.
    K.S.-M. Li, C.-L. Lee, C. Su, and J.E. Chen, “A Unified Detection Scheme and its Fault Effects of Interconnection Bus Crosstalk Faults in Deep Submicron,” Proc. Asia Test Symp., Nov. 2004, pp. 145–150.Google Scholar
  30. 30.
    K.S.-M. Li, C. Su, Y.-W. Chang, C.-L. Lee, and J.E. Chen, “IEEE Standard 1500 Compatible Interconnect Diagnosis for Delay and Crosstalk Faults,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, (in press).Google Scholar
  31. 31.
    N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed. Reading, MA: Addison-Wesley, 1992.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Katherine Shu-Min Li
    • 1
  • Chung-Len Lee
    • 2
  • Chauchin Su
    • 3
  • Jwu E Chen
    • 4
  1. 1.Department of Computer Science and EngineeringNational Sun Yat-Sen UniversityKaohsiungRepublic of China
  2. 2.Department of Electronics EngineeringNational Chiao Tung UniversityHsinchuPeople’s Republic of China
  3. 3.Department of Electronic ControlNational Chiao Tung UniversityHsinchuPeople’s Republic of China
  4. 4.Department of Electrical EngineeringNational Central UniversityChungliPeople’s Republic of China

Personalised recommendations