Dielectric properties of a low-loss (1-x)(Mg0.95Zn0.05)2TiO4-x(Ca0.8Sr0.2)TiO3 ceramic system at microwave frequencies

Abstract

The microwave dielectric properties and microstructures of the (1-x)(Mg0.95Zn0.05)2TiO4-x(Ca0.8Sr0.2)TiO3 ceramics prepared using the conventional solid-state route were investigated. The structure and microstructure were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Ilmenite-structured (Mg0.95Zn0.05)TiO3 was detected as a secondary phase. The coexistence of the second phase, however, did not degrade the dielectric properties of the specimen because the phases were compatible. At x = 0.07, a dielectric constant (εr) of ~17.86, a quality factor (Q × f) value of 133,600 Hz (at 10 GHz), and a temperature coefficient of resonant frequency (τf) of ~ −3 ppm/°C were obtained for 0.93(Mg0.95Zn0.05)2TiO4–0.07(Ca0.8Sr0.2)TiO3 ceramic sintered at 1240 °C for 4 h. The dielectric is proposed as a candidate material for low –loss microwave applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J.J. Bian, Y. Fei Dong, G.X. Song, J. Am. Ceram. Soc. 91, 1182–1187 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    C.L. Huang, J.J. Wang, Y.P. Chang, J. Am. Ceram. Soc. 90(3), 858–862 (2007)

    CAS  Article  Google Scholar 

  3. 3.

    A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 89(11), 3441–3445 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    C.L. Huang, S.S. Liu, J. Am. Ceram. Soc. 91(10), 3428–3430 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    R.C. Kell, A.C. Greenham, G.C.E. Olds, J. Am. Ceram. Soc. 56(7), 352–354 (1973)

    CAS  Article  Google Scholar 

  6. 6.

    C. L. Huang, S. S. Liu, Jpn. J. Appl. Phys. 48 (2009) 071402–1~071402–3

  7. 7.

    P.L. Wise, I.M. Reaney, W.E. Lee, J. Eur. Ceram. Soc. 21(10-11), 1723–1726 (2001)

    CAS  Article  Google Scholar 

  8. 8.

    K. Yan, M. Fujii, T. Karaki, M. Adachi, Jpn. J. Appl. Phys. 46(10B), 7105–7107 (2007)

    CAS  Article  Google Scholar 

  9. 9.

    B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theor. Tech. 8(4), 402–410 (1960)

    Article  Google Scholar 

  10. 10.

    W.E. Courtney, IEEE Trans. Microwave Theor. Tech. 18(8), 476–485 (1970)

    Article  Google Scholar 

  11. 11.

    B. D. Silveman, Phys. Rev., 125 [6] (1962) 1921–1930

  12. 12.

    C.L. Huang, S.S. Liu, Jpn. J. Appl. Phys. 46(1), 283–285 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Xu, R.L. Fu, S. Agathopoulos, X. Wang, Y. Yang, J.D. Cai, Ceram. Int. 42(13), 14573–14580 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    H.F. Zhou, K.G. Wang, W.D. Sun, X.L. Chen, H. Ruan, Mater. Lett. 217, 20e22 (2018)

    Article  Google Scholar 

  15. 15.

    H.H. Xi, D. Zhou, H.D. Xie, B. He, Q.P. Wang, Raman spectra. J. Am. Ceram. Soc. 97(2), 587–593 (2014)

    Article  Google Scholar 

  16. 16.

    Z.X. Wang, C.L. Yuan, B.H. Zhu, Q. Feng, F. Liu, J.W. Xu, C.R. Zhou, G.H. Chen, Ceram. Int. 44(6), 6601–6606 (2018)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shih-Sheng Liu or Yuan-Bin Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, SS., Chen, YB. Dielectric properties of a low-loss (1-x)(Mg0.95Zn0.05)2TiO4-x(Ca0.8Sr0.2)TiO3 ceramic system at microwave frequencies. J Electroceram (2021). https://doi.org/10.1007/s10832-020-00228-1

Download citation

Keywords

  • X-ray
  • Mg2TiO4
  • CaTiO3
  • Dielectric constant
  • Ceramic