Effect of BiScO3 doping on the structure and properties of BiFeO3-BaTiO3 piezoelectric ceramics

  • Shibo Guan
  • Huabin YangEmail author
  • Guiwu Liu
  • Guanjun Qiao
  • RuiZhang
  • Dedong Chen
  • Minhong Jiang
  • Yuanyuan Sun


High temperature lead-free piezoelectric ceramics 0.67BiFeO3–0.33BaTiO3 doped with 0.35 mol% MnO2 and xBiScO3 (x = 0, 0.005, 0.01, 0.015, 0.02) were prepared by conventional solid-state sintering method. The effects of BiScO3 doping on the crystal structure, piezoelectric, ferroelectric and dielectric properties of BiFeO3-BaTiO3 piezoelectric ceramics were investigated. The results show that the BiScO3 doping can not change the crystal structure of the ceramics and the grain size of ceramics increases first and then decreases with the BiScO3 doping content increasing. The optimum piezoelectric properties d33 = 165 pC/N, kp = 0.349 and Qm = 52.132 were obtained when x = 0.01, with the highest remanent polarization Pr = 37.1 μC/cm2. The ceramics become normal ferroelectrics determined by temperature spectrum with the increase of x, and the Curie temperature and depolarization temperature of 425 and 408 °C are respectively obtained when x = 0.01. In particular, a small amount of BiScO3 doping is beneficial to the improvement of the temperature stability. Moreover, a perovskite solid solution forms between the BiScO3 and BiFeO3-BaTiO3 ceramics, which can improve the electrical properties of BF-BT ceramic system.


BiFeO3-BaTiO3 BiScO3 Lead-free piezoelectric ceramics Temperature stability 



This work was supported by the National Natural Science Foundation of China (11364008), Natural Science Foundation of Guangxi (2014GXNSFAA118311) and Guangxi Key Laboratory of Information Materials.


  1. 1.
    Y.A.M.A.M.O.T.O. Takashi, Jpn. J. Appl. Phys. 35, 5104 (1996)CrossRefGoogle Scholar
  2. 2.
    L. Bellaiche, D. Vanderbilt, Phys. Rev. Lett. 83(7), 1347–1350 (1999)CrossRefGoogle Scholar
  3. 3.
    Y. Wan, Y. Li, Q. Li, W. Zhou, Q. Zheng, X. Wu, C. Xu, B. Zhu, D. Lin, J. Am. Ceram. Soc. 97(6), 1809–1818 (2014)CrossRefGoogle Scholar
  4. 4.
    A.J. Jacobson, B.E.F. Fender, J. Phys. C Solid State Phys. 8(6), 844–850 (1975)CrossRefGoogle Scholar
  5. 5.
    W. Kaczmarek, Z. Paja̧K, M. Połomska, Solid State Commun. 17, 807 (1975), 7, 810Google Scholar
  6. 6.
    M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, A.S. Siri, J. Eur. Ceram. Soc. 26(14), 3027–3030 (2006)CrossRefGoogle Scholar
  7. 7.
    Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13(12), 2196–2200 (2011)CrossRefGoogle Scholar
  8. 8.
    Q.Q. Wang, W. Zhuo, Q.L. Xiao, M.C. Xiang, J. Am. Ceram. Soc. 95(2), 670–675 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Wu, M. Tian, Y. Guo, Q. Zheng, L. Luo, D. Lin, J. Mater. Sci. Mater. Electron. 26(2), 978–984 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Shao, J. Zhang, Z. Zhang, P. Zheng, M. Zhao, J. Li, C. Wang, J. Phys. D. Appl. Phys. 42, 9801 (2008)Google Scholar
  11. 11.
    D.J. Kim, M.H. Lee, J.S. Park, M.H. Kim, T.K. Song, S.W. Kim, W.J. Kim, K.W. Jang, S.S. Kim, D. Do, J. Electroceram. 33(1-2), 37–41 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Yao, C. Xu, H. Liu, H. Hao, M. Cao, Z. Wang, Z. Song, W. Hu, A. Ullah, J. Mater. Sci. Mater. Electron. 25, 4975 (2014)CrossRefGoogle Scholar
  13. 13.
    N. Raengthon, D.P. Cann, J. Am. Ceram. Soc. 95(5), 1604–1612 (2012)CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, Z. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94(12), 4335–4339 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, J. Eur. Ceram. Soc. 33(6), 1177–1183 (2013)CrossRefGoogle Scholar
  16. 16.
    Q. Zhou, C. Zhou, H. Yang, G. Chen, W. Li, H. Wang, J. Am. Ceram. Soc. 95(12), 3889–3893 (2012)CrossRefGoogle Scholar
  17. 17.
    Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yan, L. Cao, J. Song, L. Peng, J. Am. Ceram. Soc. 96(7), 2252–2256 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang, W. Li, Mater. Res. Bull. 47(12), 4233–4239 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yuan, J. Mater. Sci. Mater. Electron. 24, 3952 (2013)CrossRefGoogle Scholar
  20. 20.
    S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92(12), 2957–2961 (2009)CrossRefGoogle Scholar
  21. 21.
    M.H. Lee, J.K. Da, J.S. Park, S.W. Kim, T.K. Song, M.-H. Kim, W.-J. Kim, D. Do, I.-K. Jeong, Adv. Mater. 27(43), 6976–6982 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Zuo, C. Ye, X. Fang, Jpn. J. Appl. Phys. 46(10A), 6733–6736 (2007)CrossRefGoogle Scholar
  23. 23.
    R.E. Eitel, C.A. Randall, T.R. Shrout, S.E. Park, Jpn. J. Appl. Phys. 41, 2099–2104 (2002)CrossRefGoogle Scholar
  24. 24.
    I. Calisir, D.A. Hall, J. Mater. Chem. C 6(1), 134–146 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Murakamia, N.T.A.F. Ahmeda, D. Wanga, A. Feteirab, D.C. Sinclaira, I.M. Reaneya, J. Eur. Ceram. Soc. 38(12), 4220–4231 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Qiao, C. He, Z. Wang, X. Li, Y. Liu, X. Long, Ceram. Int. 43, 11463 (2017)Google Scholar
  27. 27.
    Q. Hu, Y. Yang, Y. Wang, L. Wu, J. Yin, H. Zhu, Ceram. Int. 44, 6817 (2018)Google Scholar
  28. 28.
    Z. Dai, W. Liu, D. Lin, X. Ren, Mater. Lett. 215, 46–49 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Hiruma, H. Nagata, T. Takenaka, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2493–2499 (2007)CrossRefGoogle Scholar
  30. 30.
    Y. Hiruma, H. Nagata, T. Takenaka, Ceram. Int. 35(1), 117–120 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations