Skip to main content
Log in

Effect of annealing temperature on the interfacial interaction of LiNi0.5Mn1.5O4 thin film cathode with stainless-steel substrate

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

LiNi0.5Mn1.5O4 thin films were coated on stainless steel substrates by radio-frequency sputtering at room temperature for a lithium-ion battery. The cathode films were post-annealed at 500, 600 and 700 °C to study (i) the impact of annealing temperature on the crystallization of the cathode film and (ii) the reactivity between the cathode film and the stainless steel substrate. X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy were adopted to characterize the thin films. The electrochemical properties of the LiNi0.5Mn1.5O4 cathodes were investigated with cyclic voltammetry and galvanostatic charge/discharge tests. As the annealing temperature increased from 500 to 600 °C, the crystallinity and electrochemical characteristics of LiNi0.5Mn1.5O4 both improved. However, as the annealing temperature further increased to 700 °C, the phase purity and the electrochemical performance were greatly deteriorated. Combined chemical analyses with time-of-flight secondary ion mass spectrometry depth profiling and energy-dispersive X-ray spectroscopy in scanning transmission electron microscopy mapping have indicated that the cross-diffusion of metal ions between LiNi0.5Mn1.5O4 and the stainless steel substrate takes place at a temperature higher than 600 °C, which was attributed as a main origin of the phase change in the LiNi0.5Mn1.5O4 cathode layer and electrochemistry degradations of lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Ollinger, H. Kim, T. Sutto, A. Piqué, Appl. Surf. Sci. 252(23), 8212–8216 (2006)

    Article  Google Scholar 

  2. D.C. Bock, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Electrochim. Acta 84, 155–164 (2012)

    Article  Google Scholar 

  3. Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z.D. Deng, J. Xiao, J. Power Sources 286, 330–345 (2015)

    Article  Google Scholar 

  4. B. Kang, G. Ceder, Nature 458(7235), 190–193 (2009)

    Article  Google Scholar 

  5. H.W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, D.K. Kim, Nano Lett. 10(10), 3852–3856 (2010)

    Article  Google Scholar 

  6. Y. Shao-Horn, L. Croguennec, C. Delmas, E.C. Nelson, M.A. O'Keefe, Nat. Mater. 2(7), 464–467 (2003)

    Article  Google Scholar 

  7. M. Antaya, K. Cearns, J.S. Preston, J.N. Reimers, J.R. Dahn, J. Appl. Phys. 76(5), 2799–2806 (1994)

    Article  Google Scholar 

  8. J.C. Arrebola, A. Caballero, M. Cruz, L. Hernán, J. Morales, E.R. Castellón, Adv. Funct. Mater. 16(14), 1904–1912 (2006)

    Article  Google Scholar 

  9. Y. Wang, Z.S. Feng, C. Zhang, L. Yu, J.J. Chen, J. Hu, X.Z. Liu, Nanoscale 5(9), 3704–3712 (2013)

    Article  Google Scholar 

  10. X. Zhang, F. Cheng, J. Yang, J. Chen, Nano Lett. 13(6), 2822–2825 (2013)

    Article  Google Scholar 

  11. Y. Wang, Z.S. Feng, J.J. Chen, C. Zhang, Mater. Lett. 71, 54–56 (2012)

    Article  Google Scholar 

  12. Y. Liu, L. Chen, Ionics 18(7), 649–653 (2012)

    Article  Google Scholar 

  13. C.M. Julien, A. Mauger, Ionics 19(7), 951–988 (2013)

    Article  Google Scholar 

  14. L. Xing, W. Li, M. Xu, T. Li, L. Zhou, J. Power Sources 196(16), 7044–7047 (2011)

    Article  Google Scholar 

  15. M.C. Kim, K.-W. Nam, E. Hu, X.-Q. Yang, H. Kim, K. Kang, V. Aravindan, W.-S. Kim, Y.-S. Lee, ChemSusChem 7(3), 829–834 (2014)

    Article  Google Scholar 

  16. O. Sha, S. Wang, Z. Qiao, W. Yuan, Z. Tang, Q. Xu, Y. Su, Mater. Lett. 89, 251–253 (2012)

    Article  Google Scholar 

  17. Y. Wang, G. Yang, Z. Yang, L. Zhang, M. Fu, H. Long, Z. Li, Y. Huang, P. Lu, Electrochim. Acta 102, 416–422 (2013)

    Article  Google Scholar 

  18. H. Xia, Y.S. Meng, L. Lu, G. Ceder, J. Electrochem. Soc. 154(8), A737 (2007)

    Article  Google Scholar 

  19. H. Xia, L. Lu, Y.S. Meng, Appl. Phys. Lett. 92(1), 011912 (2008)

    Article  Google Scholar 

  20. H. Xia, Y. Wang, L. Lu, Environ. Focus 2, 57 (2013)

    Article  Google Scholar 

  21. M. Mohamedi, M. Makino, K. Dokko, T. Itoh, I. Uchida, Electrochim. Acta 48(1), 79–84 (2002)

    Article  Google Scholar 

  22. S. Lv, Z. Li, X. Luo, Appl. Surf. Sci. 419, 631–636 (2017)

    Article  Google Scholar 

  23. P.J. Kelly, R.D. Arnell, Vacuum 56(3), 159–172 (2000)

    Article  Google Scholar 

  24. L. Baggetto, R.R. Unocic, N.J. Dudney, G.M. Veith, J. Power Sources 211, 108–118 (2012)

    Article  Google Scholar 

  25. C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato, T. Saito, F. Sagane, Y. Iriyama, Adv. Energy Mater. 4(9), 1301416 (2014)

    Article  Google Scholar 

  26. P.L. Mangonon, G. Thomas, Metall. Trans. 1, 1577 (1970)

    Article  Google Scholar 

  27. P. Scherrer, Math. Phys. K 1, 98 (1918)

    Google Scholar 

  28. Y.Y. Chuang, Y.A. Chang, Metall. Mater. Trans. A 18(5), 733–745 (1987)

    Article  Google Scholar 

  29. V. Raghavan, J. Phase Equilib. 15(5), 534–538 (1994)

    Article  Google Scholar 

  30. T. Ohzuku, K. Ariyoshi, S. Takeda, Y. Sakai, Electrochim. Acta 46(15), 2327–2336 (2001)

    Article  Google Scholar 

  31. K.M. Shaju, G.S. Rao, B.V.R. Chowdari, Electrochim. Acta 48(11), 1505–1514 (2003)

    Article  Google Scholar 

  32. C.J. Jafta, M.K. Mathe, N. Manyala, W.D. Roos, K.I. Ozoemena, ACS Appl. Mater. Interfaces 5(15), 7592–7598 (2013)

    Article  Google Scholar 

  33. Y.J. Wei, L.Y. Yan, C.Z. Wang, X.G. Xu, F. Wu, G.J. Chen, Phys. Chem. B 108(48), 18547–18551 (2004)

    Article  Google Scholar 

  34. S.T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H.T. Chung, T.H. Cho, Electrochim. Acta 47(15), 2543–2549 (2002)

    Article  Google Scholar 

  35. Y.S. Lee, S. Sato, M. Tabuchi, C.S. Yoon, Y.K. Sun, K. Kobayakawa, Y. Sato, Electrochem. Commun. 5(7), 549–554 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Jong Heon Kim and Jozeph Park contributed equally to this work. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No: NRF-2017R1A2B4007875) and also supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Grant No: NRF-2013R1A4A1069528).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyusung Park or Hyun-Suk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Park, J., Park, K. et al. Effect of annealing temperature on the interfacial interaction of LiNi0.5Mn1.5O4 thin film cathode with stainless-steel substrate. J Electroceram 42, 104–112 (2019). https://doi.org/10.1007/s10832-018-0168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0168-4

Keywords

Navigation