Skip to main content
Log in

Determination of polaronic conductivity in disordered double perovskite La2CrMnO6

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Double perovskite La2CrMnO6 ceramics was sintered using standard high temperature route in ambient air. The orthorhombic Pbnm cell characterized by a total disorder between Cr and Mn ions was determined using an XRD powder test. The grain morphology, porosity and chemical composition were determined using scanning electron microscopy. The X-ray photoemission spectroscopy showed several contributions to O 1 s, La 3d, Mn 2p, and Cr 2p core lines related to the occurrence of multiple ionic states. The electrical permittivity, modulus, AC and DC conductivity were measured in ranges of f = 20 Hz – 1 MHz and 76–440 K. The electrical transport mechanism was attributed to the small polarons. The nearest neighbor hopping occurred in the range 170 to 440 K. The variable range hoping, attributed to the Fermi glass features and disorder, was detected in the range 100 to 160 K. The relaxation process related to the temperature-independent activation energy was deduced from the electric modulus scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395(6703), 677–680 (1998)

    Article  Google Scholar 

  2. H. Kawanaka, I. Hase, S. Toyama, Y. Nishihara, J. Phys. Soc. Jpn. 68(9), 2890–2893 (1999)

    Article  Google Scholar 

  3. K.I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura, Phys. Rev. B Condens. Matter 59(17), 11159–11162 (1999)

    Article  Google Scholar 

  4. D.K. Mahato, T.P. Sinha, J. Alloys Compd. 634, 246–252 (2015)

    Article  Google Scholar 

  5. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127(24), 8889–8892 (2005)

    Article  Google Scholar 

  6. V.L.J. Joly, P.A. Joy, S.K. Date, Phys. Rev. B 65(18), 184416–184411 (2002)

    Article  Google Scholar 

  7. N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Adv. Mater. 17(18), 2225–2227 (2005)

    Article  Google Scholar 

  8. A.K. Biswal, J. Ray, P.D. Babu, V. Siriguri, P.N. Vishwakarma, J. Appl. Phys. 115(19), 194106 (2014)

    Article  Google Scholar 

  9. S. Hèbert, C. Martin, A. Maignan, R. Retoux, M. Hervieu, N. Nguyen, B. Raveau, Phys. Rev. B 65(10), 104420–104421 (2002)

    Article  Google Scholar 

  10. T. Wenyi, Z. Qin, Y. Han, Z. Xiufang, L. Hongy, Int. J. Hydrogen Energ. 37(9), 7398–7404 (2012)

    Article  Google Scholar 

  11. J.C. Ruiz-Morales, J. Canales-Vázquez, D. Marrero-López, J.T.S. Irvine, P. Núňez, Electrochim. Acta 52(25), 7217–7225 (2007)

    Article  Google Scholar 

  12. S. Vasala, M. Karppinen, Prog. Solid St. Chem. 43(1-2), 1–36 (2015)

    Article  Google Scholar 

  13. C. Artini, J. Eur. Ceram. Soc. 37(2), 427–440 (2017)

    Article  Google Scholar 

  14. Y. Sun, X. Xu, Y. Zhang, J. Phys. Condens. Matter 12(50), 10475–10480 (2000)

    Article  Google Scholar 

  15. R. Laiho, K.G. Lisunov, E. Lahderanta, V.N. Stamov, V.S. Zakhvalinskii, J. Phys. Condens. Matter 13(6), 1233–1246 (2001)

    Article  Google Scholar 

  16. J.P. Palakkal, C.R. Sankar, A.P. Paulose, M. Valant, A. Badasyan, M.R. Varma, Mat. Res. Bull. 100, 226–233 (2018)

    Article  Google Scholar 

  17. J. P. Palakkal, C. R. Sankar, M. R. Varma, J. Appl. Phys. 122 073907 (2017)

  18. M. Hrovat, S. Bernik, J. Holc, D. Kuscer, D. Kolar, J. Mater. Sci. Lett. 16(2), 143–146 (1997)

    Article  Google Scholar 

  19. S. Estemirova, A. Fetisov, V. Balakirev, S. Titova, J. Supercond. Nov. Magn. 20(2), 113–116 (2007)

    Article  Google Scholar 

  20. U.H. Bents, Phys. Rev. B 106(2), 225–230 (1957)

    Article  Google Scholar 

  21. D.V. Karpinsky, I.O. Troyanchuk, V.V. Sikolenko, J. Phys.: Condens. Mat. 19, 036220–036221 (2007)

    Google Scholar 

  22. D. Singh, A. Mahajan, J. Alloys Compd. 644, 172–179 (2015)

    Article  Google Scholar 

  23. P. Barrozo, J. A. Aguiar, J. Appl. Phys. 113 17E309 (2013)

  24. J.P. Palakkal, P.N. Lekshmi, S. Thomas, K.G. Suresh, M.R. Varma, RSC Adv. 5(128), 105531–105536 (2015)

    Article  Google Scholar 

  25. E. Ksepko, E. Talik, A. Ratuszna, A. Molak, Z. Ujma, I. Gruszka, J. Alloys Compd. 386(1-2), 35–42 (2005)

    Article  Google Scholar 

  26. A. Molak, M. Pawełczyk, Ferroelectrics 367(1), 179–189 (2008)

    Article  Google Scholar 

  27. A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, S. St, Ionics 176(15-16), 1439–1447 (2005)

    Article  Google Scholar 

  28. A. Molak, E. Talik, M. Kruczek, M. Paluch, A. Ratuszna, Z. Ujma, Mater. Sci. Eng. B 128(16), 16–24 (2006)

    Article  Google Scholar 

  29. A. Molak, Z. Ujma, M. Pilch, I. Gruszka, M. Pawełczyk, Ferroelectrics 464(1), 59–71 (2014)

    Article  Google Scholar 

  30. M. Pilch, A. Molak, J. Koperski, P. Zajdel, 90 112 (2017)

  31. D.N. Singh, T.P. Sinha, D.K. Mahato, J. Alloys Compd. 729, 1226–1233 (2017)

    Article  Google Scholar 

  32. F. Jin, Y. Shen, R. Wang, T. He, J. Power Sources 234, 244–251 (2013)

    Article  Google Scholar 

  33. R. I. Dass, J. Q. Yan, J. B. Goodenough, Phys. Rev. B 68 064415 (2003)

  34. H.M. Rietveld, J. Appl. Crystallogr. 2(65), 65–71 (1969)

    Article  Google Scholar 

  35. J. Rodriguez-Carvajal, Newsletter 26(12) (2001)

  36. S. Gražulis, A. Daškevic, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N.R. Serebryanaya, P. Moeck, R.T. Downs, A. LeBail, Nucleic Acids Res. 40(D1), D420–D427 (2012)

    Article  Google Scholar 

  37. S. Grazulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeckg, A. Le Bail, J. Appl. Crystallogr. 42(4), 726–729 (2009)

    Article  Google Scholar 

  38. R. I. Dass, J. B. Goodenough, Phys. Rev. B 67 014401 (2003)

  39. C.L. Bull, D. Gleeson, K.S. Knight, J. Phys. Condens. Matter 15(29), 4927–4936 (2003)

    Article  Google Scholar 

  40. P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Crystallogr. 20(79), 79–83 (1987)

    Article  Google Scholar 

  41. J.F. Moulder, Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. Phys. Electronics. (1995)

  42. R.D. Shannon, Acta Cryst. A 32(5), 751–767 (1976)

  43. I.O. Troyanchuk, D.D. Khalyavin, J.W. Lynn, R.W. Erwin, Q. Huang, H. Szymczak, R. Szymczak, M. Baran, J. Appl. Phys. 88(1), 360–367 (2000)

    Article  Google Scholar 

  44. S. Yáňez-Vilar, E.D. Mun, V.S. Zapf, B.G. Ueland, J.S. Gardner, J.D. Thompson, J. Singleton, M. Sánchez-Andújar, J. Mira, N. Biskup, M.A. Señarís-Rodríguez, C.D. Batista, Phys. Rev. B 84(13), 134427–134421 (2011)

    Article  Google Scholar 

  45. P.M. Woodward, Acta Cryst. B 53(1), 44–66 (1997)

  46. D. Serrate, J.M. De Teresa, M.R. Ibarra, J. Phys. Condens. Matter 19(2), 023201 (2007)

    Article  Google Scholar 

  47. J. Hong, A. Stroppa, J. I˜niguez, S. Picozzi, D. Vanderbilt, Phys. Rev. B 85 054417 (2012)

  48. Y.K. Wang, P.H. Lee, G.Y. Guo, Phys. Rev. B 80(22), 224418 (2009)

    Article  Google Scholar 

  49. A. Molak, M. Pilch, J. Appl. Phys. 119(20), 204901 (2016)

    Article  Google Scholar 

  50. M. Szubka, E. Talik, A. Molak, S. Turczyński, D. A. Pawlak 45, 1309 (2010)

    Google Scholar 

  51. M. Pilch, P.D. Thesis, University of Silesia. Katowice (2010)

  52. M. Stojanovic, Ph. D. Thesis, University of Toronto (1998). https://tspace.library.utoronto.ca

  53. M. Pilch, A. Molak, Phase Transit. 87(10-11), 1114–1128 (2014)

    Article  Google Scholar 

  54. X. Liu, W. Su, Z. Lu, Chem. Phys. 82, 327 (2003)

    Google Scholar 

  55. N. Das, S. Singh, A.G. Joshi, M. Thirumal, V.R. Reddy, L.C. Gupta, A.K. Ganguli, Inorg. Chem. 56(21), 12712–12718 (2017)

    Article  Google Scholar 

  56. K. Rida, A. Benabbas, F. Bouremmad, M. A. Peña, A. Martínez-Arias, Catalysis Commun. 7 963 (2006)

  57. N. Uekawa, K. Kaneko, J. Phys. Chem. 100(10), 4193–4198 (1996)

    Article  Google Scholar 

  58. A. Molak, K. Ławniczak-Jabłońska, P. Nachimuthu, R.C.C. Perera, Ferroelectrics 418(1), 14–18 (2011)

    Article  Google Scholar 

  59. H. Chen, A. Mills, Phys. Rev. B 93(10), 104111 (2016)

    Article  Google Scholar 

  60. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D. Appl. Phys. 38 1450 (2005), 9, 1460

  61. J. P. Palakkal, C .R. Sankar, A. P. Paulose, M. R. Varma, J. Alloys Compd. 743, 403 (2018), 409

  62. Y. Lyanda-Geller, S.H. Chun, M.B. Salamon, P.M. Goldbart, P.D. Han, Y. Tomioka, A. Asamitsu, Y. Tokura, Phys. Rev. B 63(184426) (2001)

  63. A. Molak, M. Paluch, S. Pawlus, Z. Ujma, M. Pawelczyk, I. Gruszka, Phase Transit. 79(6-7), 447–460 (2006)

    Article  Google Scholar 

  64. M. Wubbenhorst, J. Van Turnhout, J. Non-Cryst. Solids 305(40), 40–49 (2002)

    Article  Google Scholar 

  65. A. Banerjee, S. Pal, E. Rozenberg, B.K. Chaudhuri, J. Phys. Condens. Matter 13(42), 9489–9504 (2001)

    Article  Google Scholar 

  66. A. Banerjee, S. Pal, B.K. Chaudhuri, J. Chem. Phys. 115(3), 1550–1558 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Directorate of Extramural Research & Intellectual Property Rights (ER & IPR), Defence Res & Dev Orgn (DRDO) of India under grant no. ERIP/ER/1406036/M/01/1566. This research work was performed also under research program 1S-0317-500-1-05-05 of the Institute of Physics, University of Silesia, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev K. Mahato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, D.K., Molak, A., Szeremeta, A.Z. et al. Determination of polaronic conductivity in disordered double perovskite La2CrMnO6. J Electroceram 42, 136–146 (2019). https://doi.org/10.1007/s10832-018-0164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0164-8

Keywords

Navigation