Optimized electrical properties of (Bi1/2K1/2)TiO3- bi(Mn2/3Sb1/3)O3 lead-free ceramics in mixing phase region

  • Zhihua Guo
  • Mankang Zhu
  • Ling Li
  • Mupeng Zheng
  • Yudong Hou
Article
  • 7 Downloads

Abstract

A new lead-free (1-x)(Bi1/2K1/2)TiO3-xBi(Mn2/3Sb1/3)O3 (BKT-BMS) piezoelectric ceramics were prepared by conventional solid-state route. The experiments show that the addition of BMS induces the occurrence of a mixed tetragonal and pseudocubic phases, and the fraction of tetragonal to pseudocubic phases closes to 50:50 around the composition x = 0.015, at where the dielectric, ferroelectric and piezoelectric properties is optimized. It is highlighted that the Td for the composition x = 0.015 keeps at an adequately-high level around 205 °C. All these competitive properties of the composition x = 0.015 demonstrate the potential application for lead-free piezoelectric ceramics over a broad temperature range.

Keywords

Piezoelectric ceramic Ferroelectric and piezoelectric properties Phase structure 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51602012, 51677001), the Natural Science Foundation of Beijing (Grant No. 4164078), Ri-Xin Talents Project of Beijing University of Technology (Grant No. 2017-RX(1)-15), Jing-Hua Talents Project of Beijing University of Technology (Grant No. 2015-JH-L04) and Beijing Municipal High Level Innovative Team Building Program (No. IDHT20170502).

References

  1. 1.
    E.A. Neppiras, J. Sound Vib. 20, 562 (1972)CrossRefGoogle Scholar
  2. 2.
    Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 43(11A), 7556–7559 (2004)CrossRefGoogle Scholar
  3. 3.
    W. Lei, S. Bo, H. Querui, et al., J. Am. Ceram. Soc. 100, 4670 (2017)CrossRefGoogle Scholar
  4. 4.
    W. Liu, X. Ren, Phys. Rev. Lett. 103(25), 257602 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Zuo, F. Jian, J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)CrossRefGoogle Scholar
  6. 6.
    W. Qi, J. Chen, L. Fan, et al., J. Am. Ceram. Soc. 96, 3793 (2013)CrossRefGoogle Scholar
  7. 7.
    X. Liu, B. Liu, F. Li, et al., J. Mater. Sci. 53, 309 (2017)CrossRefGoogle Scholar
  8. 8.
    W. Bai, D. Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, J. Zhai, Z. Ji, J. Eur. Ceram. Soc. 37(7), 2591–2604 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Liao, D. Xiao, D. Lin, J. Zhu, P. Yu, L. Wu, X. Wang, Mater. Sci. Eng. B 133(1-3), 172–176 (2006)CrossRefGoogle Scholar
  10. 10.
    S.D. Skapin, B. Jančar, R. Ubic, et al., J. Am. Ceram. Soc. 93, 4168 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Rödel, W. Jo, K.T.P. Seifert, et al., J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  12. 12.
    Z. Pan, W. Qi, J. Chen, et al., J. Am. Ceram. Soc. 98(1), 104–108 (2015)CrossRefGoogle Scholar
  13. 13.
    W. Zhao, R. Zuo, Ceram. Int. 39(8), 9121–9124 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Zeb, S.J. Milne, D.C. Sinclair, J. Am. Ceram. Soc. 97(8), 2413–2415 (2014)CrossRefGoogle Scholar
  15. 15.
    D.D. Khalyavin, A.N. Salak, N.P. Vyshatko, A.B. Lopes, N.M. Olekhnovich, A.V. Pushkarev, I.I. Maroz, Y.V. Radyush, Chem. Mater. 18(21), 5104–5110 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, J. Am. Ceram. Soc. 90(1), 120–124 (2007)CrossRefGoogle Scholar
  17. 17.
    C.-R. Zhou, X.-Y. Liu, J. Electroceram. 19(2-3), 237–240 (2007)CrossRefGoogle Scholar
  18. 18.
    W.C. Lee, C.Y. Huang, L.K. Tsao, Y.-C. Wu, J. Eur. Ceram. Soc. 29(8), 1443–1448 (2009)CrossRefGoogle Scholar
  19. 19.
    I. Grinberg, M.R. Suchomel, P.K. Davies, et al., J. Appl Phys. 98, 094111 (2005)CrossRefGoogle Scholar
  20. 20.
    C.J. Guo, C.S. Zhang, Z. Wang, J. Funct. Mater. 42, 821 (2011)Google Scholar
  21. 21.
    P. Jaita, P. Jarupoom, R. Yimnirun, et al., Ceram. Int. 42, 15940 (2016)CrossRefGoogle Scholar
  22. 22.
    R.D. Shannon, Acta Crystallogr. 32(5), 751–767 (1976)CrossRefGoogle Scholar
  23. 23.
    T. Egami, Annu. Rev. Mater. Res. 37(1), 297–315 (2007)CrossRefGoogle Scholar
  24. 24.
    D. Phelan, C. Stock, J.A. Rodriguez-Rivera, S. Chi, J. Leão, X. Long, Y. Xie, A.A. Bokov, Z.G. Ye, P. Ganesh, P.M. Gehring, Proc. Natl. Acad. Sci. 111(5), 1754–1759 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Otoničar, S.D. Škapin, B. Jančar, R. Ubic, D. Suvorov, J. Am. Ceram. Soc. 93(12), 4168–4173 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Hagiwara, S. Fujihara, Appl. Phys. Lett. 107(1), 012903 (2015)CrossRefGoogle Scholar
  27. 27.
    W. Bai, B. Shen, J. Zhai, et al., Dalton Trans. 45, 14141 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Hiruma, H. Nagata, T. Takenaka, Ceram. Int. 35(1), 117–120 (2009)CrossRefGoogle Scholar
  29. 29.
    J. König, D. Suvorov, J. Eur. Ceram. Soc. 35(10), 2791–2799 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Guo, M. Zhu, L. Li, et al., J. Appl Phys. 121, 014101 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Wan, Z. Li, Z. Xu, et al., J. Alloys Compd. 558, 244 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Guo, M. Zhu, L. Li, M. Zheng, Y. Hou, J. Alloys Compd. 703, 448–453 (2017)CrossRefGoogle Scholar
  33. 33.
    D. Zhang, X. Han, Z. Li, et al., Can. J. Phys. 83(5), 527–540 (2005)CrossRefGoogle Scholar
  34. 34.
    S.H. Yoon, M.Y. Kim, D. Kim, J. Appl. Phys. 122(15), 154103 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Takahashi, Jpn. J. Appl. Phys. 9(10), 1236–1246 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhihua Guo
    • 1
  • Mankang Zhu
    • 1
  • Ling Li
    • 1
  • Mupeng Zheng
    • 1
  • Yudong Hou
    • 1
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations