Advertisement

Journal of Electroceramics

, Volume 40, Issue 4, pp 338–346 | Cite as

Dielectric, impedance and modulus spectroscopy of BaBi2Nb2O9

  • Sunanda K. Patri
  • P. L. Deepti
  • R. N. P. Choudhary
  • B. Behera
Article
  • 94 Downloads

Abstract

Barium Bismuth Niobate (BaBi2Nb2O9) has been synthesized by solid state reaction method. The X-ray diffraction study confirms the formation of compound. Morphological analysis has been carried out from the scanning electron microscopy images and the elemental analysis from the energy dispersive spectroscopy profiles. Investigation of dielectric and ferroelectric properties of the sample was done by varying the temperature from 25 °C - 500 °C in a frequency range of 1 kHz- 1 MHz. At 100 kHz, the phase transition was observed at 214.02°C. Further, this ferroelectric bi-layered perovskite exhibits an interesting relaxor behavior with a strong dispersion of the dielectric permittivity. A detailed study on the impedance spectroscopy over a wide range of temperature and frequency exhibits the contribution of grain ad grain boundary on different electrical parameters. From modulus spectroscopy, the presence of non-Debye type of relaxation in the material has been manifested. The complex modulus plots support the negative temperature coefficient of resistance (NTCR) type behavior of the material.

Keywords

BaBi2Nb2O9 Solid state reaction Relaxor ferroelectrics Dielectric permittivity 

References

  1. 1.
    C.A.P. de Arauzo, J.F. Scott, Science 246, 1400 (1989)CrossRefGoogle Scholar
  2. 2.
    A.I. Kingon, Current opinion in solid state and materials science, Elsevier, 1999, p. 39Google Scholar
  3. 3.
    E.C. Subbarao, J. Am. Ceram. Soc. 45(4), 166–169 (1962)CrossRefGoogle Scholar
  4. 4.
    E.C. Subbarao, J. Phys. Chem. Solids 23(6), 665–676 (1962)CrossRefGoogle Scholar
  5. 5.
    A.L. Kholkin, M. Avdeev, M.E.V. Costa, J.L. Bapista, S.N. Dorogovtsev, Appl. Phy. Lett. 79(5), 662–664 (2001)CrossRefGoogle Scholar
  6. 6.
    C.-H. Lu, C.-Y. Wen, Mater. Lett. 38(4), 278–282 (1999)CrossRefGoogle Scholar
  7. 7.
    Y. Xu, Ferroelectric materials and their applications (Elsevier, Amsterdam, 1991)Google Scholar
  8. 8.
    L.E. Cross, Ferroelectrics 151(1), 305–320 (1994)CrossRefGoogle Scholar
  9. 9.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Phys. Rev. B 61(10), 6559–6564 (2000)CrossRefGoogle Scholar
  10. 10.
    S.M. Blake, M.J. Falconer, M. McCreedy, P. Lightfoot, J. Mater. Chem. 7(8), 1609–1613 (1997)CrossRefGoogle Scholar
  11. 11.
    B.J. Ismunandar, Kennedy. J. Mater. Chem. 9, 541 (1999)CrossRefGoogle Scholar
  12. 12.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, Sov. Phys. Solid State 3, 651 (1961)Google Scholar
  13. 13.
    P. Keburis, J. Banys, A. Brilingas, J. Prapuolenis, A. Kholkin, M.E.V. Costa, Ferroelectrics 353(1), 149–153 (2007)CrossRefGoogle Scholar
  14. 14.
    V.V. Shvartsman, M.E. Costa, M. Avdeev, A.L. Kholkin, Ferroelectrics 296(1), 187–197 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Sahni, N. Kumar, S. Singh, A. Jha, S. Chaubey, M. Kumar, M.K. Sharma, J. Mater. Sci. Mater. Electron. 25, 2199 (2014)CrossRefGoogle Scholar
  16. 16.
    O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49(12), 7868–7873 (1994)CrossRefGoogle Scholar
  17. 17.
    P. Khatri, B. Behera, R.P.N. Choudhary, Structural and impedance properties of Ca3Nb2O8 ceramics. J. Phys. Chem. Solids 70(2), 385–389 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Ramaraghavulu, S. Buddhudu, Ferroelectrics 460, 57–67 (2014) 1563–5112CrossRefGoogle Scholar
  19. 19.
    H. Vogel, Phys. Z. 22, 645–646 (1921)Google Scholar
  20. 20.
    G. Fulcher, J. Amer, Ceram. Soc. 8(6), 339–355 (1925)CrossRefGoogle Scholar
  21. 21.
    D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106(2), 024102–024110 (2009)CrossRefGoogle Scholar
  22. 22.
    G.I. Skanavi, E.N. Matveeva, Sov. Phys. JETP 3, 905 (1957)Google Scholar
  23. 23.
    I. Burn, S. Neirman, J. Mater. Sci. 17(12), 3510–3524 (1982)CrossRefGoogle Scholar
  24. 24.
    K.C. Kao, Dielectric phenomena in solids (Elsevier Academic Press, London, UK, 2004)Google Scholar
  25. 25.
    O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49(12), 7868–7873 (1994)CrossRefGoogle Scholar
  26. 26.
    S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Phys. D. Appl. Phys. 47(27), 275301 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Kumar, S.K. Patri, R.N.P. Choudhary, J. Alloys Compd. 615, 456–460 (2014)CrossRefGoogle Scholar
  28. 28.
    C. Karthik, K.B.R. Varma, J. Phys. Chem. Solids 67(12), 2437–2441 (2006)CrossRefGoogle Scholar
  29. 29.
    A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  30. 30.
    S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86(4), 2215–2219 (1999)CrossRefGoogle Scholar
  31. 31.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66(8), 3850–3856 (1989)CrossRefGoogle Scholar
  32. 32.
    T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2(3), 132–138 (1990)CrossRefGoogle Scholar
  33. 33.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74(2), 125–143 (1976)CrossRefGoogle Scholar
  34. 34.
    M. Azizar Rahman, A.K.M. Akther Hossain, Phys. Scr. 89(11), 115811 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallee, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D. Appl. Phys. 46(6), 065308 (2013)CrossRefGoogle Scholar
  36. 36.
    Y.-M. Li, W. Chen, J. Zhou, Q. Xu, X.-Y. Gu, R.-H. Liao, Physica B 365(1-4), 76–81 (2005)CrossRefGoogle Scholar
  37. 37.
    A.K. Jonscher, The universe dielectric response. Nature 267(5613), 673–679 (1977)CrossRefGoogle Scholar
  38. 38.
    J. Ha’nderek, Z. Ujma, C. Carabatos-Nedelec, G.E. Kugel, D. Dmytr’ow, I. El-Harrad, J. Appl. Phys. 73, 367–373 (1993)CrossRefGoogle Scholar
  39. 39.
    Z. Ujma, M. Adamczyk, J. Ha’nderek, J. Europ. Ceram. Soc. 18(14), 2201–2008 (1998)CrossRefGoogle Scholar
  40. 40.
    P. Braunlich, Topics in Appl. Phys. 37, 35–91 (1979)CrossRefGoogle Scholar
  41. 41.
    M. Adamczyk, L. Kozeilski, A.N.D.M. Pilch, Ferroelectrics 417(1), 1–8 (2011)CrossRefGoogle Scholar
  42. 42.
    M.A. Ahmed, S.F. Mansour, M.A. Abdo, Phys. Scr. 86(2), 025705 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, J. Mater. Sci. Mater. Electron. 26, 6572–6584 (2015)CrossRefGoogle Scholar
  44. 44.
    A.K. Jonscher, Dielectricrelaxationinsolids, Nature (London) 267 (1977), 673–679Google Scholar
  45. 45.
    P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13 (1972)Google Scholar
  46. 46.
    D.K. Mahato, A. Dutta, T.P. Sinha, Phys. B 406(13), 2703–2708 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sunanda K. Patri
    • 1
  • P. L. Deepti
    • 1
  • R. N. P. Choudhary
    • 2
  • B. Behera
    • 3
  1. 1.Department of PhysicsVeer Surendra Sai University of TechnologySambalpurIndia
  2. 2.Department of PhysicsInstitute of Technical Education and ResearchBhubaneswarIndia
  3. 3.Department of PhysicsSambalpur UniversitySambalpurIndia

Personalised recommendations