Temperature-dependence of electrical properties for the ceramic composites based on potassium polytitanates of different chemical composition

  • N. V. Gorshkov
  • V. G. Goffman
  • M. A. Vikulova
  • D. S. Kovaleva
  • E. V. Tretyachenko
  • A. V. Gorokhovsky
Article
  • 68 Downloads

Abstract

The samples of ceramic materials based on potassium polytitanate (PPT) characterized with various TiO2/K2O molar ratio, are produced by calcination at 900 °C and investigated. AC conductivity (σ ac ) of the obtained ceramics is measured at different temperatures between 200 and 800 °C in frequency range of 0.1 Hz–1 MHz. The method of combined impedance and modulus spectroscopy is used to analyze the obtained results. The activation energies of DC conductivity, bulk and grain-boundary conductivity as well as relaxation frequency for studied composites are estimated. Using the correlated barrier hopping (CBH) model, the energies of potential barrier between neighboring defect sites for all kinds of investigated materials are presented. The bulk and grain boundary parameters of the produced ceramic materials based on potassium polytitanates are calculated. The mechanism of different vacancies formation in the investigated ceramic system is discussed. The influence of precursor chemical composition on electrical properties for the ceramic composites based on potassium polytitanates is studied.

Keywords

Multiphase ceramics Impedance spectroscopy Electric conductivity Relaxation processes Oxygen vacancies Grain boundary 

Notes

Acknowledgements

This research was financially supported by Ministry of Education and Science of the Russian Federation (project 4.6197.2017/8.9).

References

  1. 1.
    Y. Lin, S. Fang, D. Su, K.S. Brinkman, F. Chen, Nat. Commun. A 6 (2015)Google Scholar
  2. 2.
    C.M. Wang, J.F. Wang, Appl. Phys. Lett. A 89, 202905 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Suchanicz, Mater. Sci. Eng., B. A 55, 114 (1998)CrossRefGoogle Scholar
  4. 4.
    P. Adhikari, R. Mazumder, S. Abhinay, J. Electroceram. A 37, 127 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Pal, S.D. Pandey, P. Chand, Solid State Commun. A 69, 1203 (1989)CrossRefGoogle Scholar
  6. 6.
    S. Kikkawa, F. Yasuda, M. Koizumi, Mater. Res. Bull. A 20, 1221 (1985)CrossRefGoogle Scholar
  7. 7.
    T. Sanchez Monjaras, A. Gorokhovsky, J.I. Escalante Garcia, J. Am. Ceram. Soc. A 91, 3058 (2008)CrossRefGoogle Scholar
  8. 8.
    H.C. Gulledge, Ind. Eng. Chem. A 52, 117 (1960)CrossRefGoogle Scholar
  9. 9.
    S.R. Tandon, S.D. Pandey, J. Phys. Chem. Solids. A 52, 1101 (1991)CrossRefGoogle Scholar
  10. 10.
    E.V. Tretyachenko, A.V. Gorokhovsky, G.Y. Yurkov, F.S. Fedorov, M.A. Vikulova, D.S. Kovaleva, E.E. Orozaliev, Particuology A 17, 22 (2014)CrossRefGoogle Scholar
  11. 11.
    V.G. Goffman, A.V. Gorokhovsky, N.V. Gorshkov, F.S. Fedorov, E.V. Tretychenko, A.V. Sevrugin, Data in Brief A 4, 193 (2015)CrossRefGoogle Scholar
  12. 12.
    V.G. Goffman, A.V. Gorokhovsky, M.M. Kompan, E.V. Tretyachenko, O.S. Telegina, A.V. Kovnev, F.S. Fedorov, J. Alloys Compd. A 615, S526 (2014)CrossRefGoogle Scholar
  13. 13.
    A.V. Gorokhovsky, E.V. Tretyachenko, V.G. Goffman, N.V. Gorshkov, F.S. Fedorov, A.V. Sevryugin, Inorg. Mater. A 52, 587 (2016)CrossRefGoogle Scholar
  14. 14.
    N. Bao, X. Feng, X. Lu, Z. Yang, J. Mater. Sci. A 37, 3035 (2002)CrossRefGoogle Scholar
  15. 15.
    Y. Park, K. Terasaki, K. Igarashi, T. Shimizu, Adv. Compos. Mater. A 10, 17 (2001)CrossRefGoogle Scholar
  16. 16.
    M.I. Biryukova, I.N. Burmistrov, G.Y. Yurkov, I.N. Mazov, A.A. Ashmarin, A.V. Gorokhovskii, V.I. Gryaznov, V.M. Buznik, Theor. Found. Chem. Eng. A 49, 485 (2015)CrossRefGoogle Scholar
  17. 17.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon press, Oxford, 1971)Google Scholar
  18. 18.
    A.K. Jonscher, Nature A 267, 673 (1977)CrossRefGoogle Scholar
  19. 19.
    J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, Physica B: Condens. Matter A 340, 324 (2003)CrossRefGoogle Scholar
  20. 20.
    U. Akgul, Z. Ergin, M. Sekerci, Y. Atici, Vacuum A 82, 340 (2007)CrossRefGoogle Scholar
  21. 21.
    G.E. Pike, Phys. Rev. B: Condens. Matter. A 6, 1572 (1972)CrossRefGoogle Scholar
  22. 22.
    R. Muccillo, E.N.S. Muccillo, J. Electroceram. A 38, 24 (2017)CrossRefGoogle Scholar
  23. 23.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications (Wiley, Canada, 2005), pp. 129–204CrossRefGoogle Scholar
  24. 24.
    A. Feteira, J. Am. Ceram. Soc. A 92, 967 (2009)CrossRefGoogle Scholar
  25. 25.
    J.T. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. A 2, 132 (1990)CrossRefGoogle Scholar
  26. 26.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics (Marcel Dekkar, New York, 1989)Google Scholar
  27. 27.
    A.V. Gorokhovskii, V.G. Goffman, N.V. Gorshkov, E.V. Tret’yachenko, O.S. Telegina, A.V. Sevryugin, Glass Ceram. A 72, 54 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Sumi, P.P. Rao, P. Koshy, Ceram. Int. A 41, 5992 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, Solid State Ion. A 176, 1439 (2005)CrossRefGoogle Scholar
  30. 30.
    L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A. A 104, 1047 (2011)CrossRefGoogle Scholar
  31. 31.
    A.G. Krasnov, I.V. Piir, M.S. Koroleva, N.A. Sekushin, Y.I. Ryabkov, M.M. Piskaykina, V.A. Sadykov, E.M. Sadovskaya, V.V. Pelipenko, N.F. Eremeev, Solid State Ion. A 302, 118 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Haase, Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, 1962)Google Scholar
  33. 33.
    R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, M.E. dela Cruz, J.P. Ferraris, A.A. Zakhidov, R.H. Baughman, Nano Lett. A 10, 838 (2010)CrossRefGoogle Scholar
  34. 34.
    F.A. Kröger, H.J. Vink, J. Phys. Chem. Solids. A 5, 208 (1958)CrossRefGoogle Scholar
  35. 35.
    A.S. Bondarenko, G.A. Ragoisha, J. Solid State Electrochem. A 9, 845 (2005)CrossRefGoogle Scholar
  36. 36.
    G. Gregori, R. Merkle, J. Maier, Prog. Mater Sci. A 89, 252 (2017)CrossRefGoogle Scholar
  37. 37.
    F.S. Fedorov, A.S. Varezhnikov, I. Kiselev, V.V. Kolesnichenko, I.N. Burmistrov, M. Sommer, D. Fuchs, C. Kübel, A.V. Gorokhovsky, V.V. Sysoev, Anal. Chim. Acta A 897, 81 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. V. Gorshkov
    • 1
  • V. G. Goffman
    • 1
  • M. A. Vikulova
    • 1
  • D. S. Kovaleva
    • 1
  • E. V. Tretyachenko
    • 1
  • A. V. Gorokhovsky
    • 1
  1. 1.Yuri Gagarin State Technical University of SaratovSaratovRussian Federation

Personalised recommendations