Skip to main content
Log in

Temperature-dependence of electrical properties for the ceramic composites based on potassium polytitanates of different chemical composition

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The samples of ceramic materials based on potassium polytitanate (PPT) characterized with various TiO2/K2O molar ratio, are produced by calcination at 900 °C and investigated. AC conductivity (σac) of the obtained ceramics is measured at different temperatures between 200 and 800 °C in frequency range of 0.1 Hz–1 MHz. The method of combined impedance and modulus spectroscopy is used to analyze the obtained results. The activation energies of DC conductivity, bulk and grain-boundary conductivity as well as relaxation frequency for studied composites are estimated. Using the correlated barrier hopping (CBH) model, the energies of potential barrier between neighboring defect sites for all kinds of investigated materials are presented. The bulk and grain boundary parameters of the produced ceramic materials based on potassium polytitanates are calculated. The mechanism of different vacancies formation in the investigated ceramic system is discussed. The influence of precursor chemical composition on electrical properties for the ceramic composites based on potassium polytitanates is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Lin, S. Fang, D. Su, K.S. Brinkman, F. Chen, Nat. Commun. A 6 (2015)

  2. C.M. Wang, J.F. Wang, Appl. Phys. Lett. A 89, 202905 (2006)

    Article  Google Scholar 

  3. J. Suchanicz, Mater. Sci. Eng., B. A 55, 114 (1998)

    Article  Google Scholar 

  4. P. Adhikari, R. Mazumder, S. Abhinay, J. Electroceram. A 37, 127 (2016)

    Article  Google Scholar 

  5. S. Pal, S.D. Pandey, P. Chand, Solid State Commun. A 69, 1203 (1989)

    Article  Google Scholar 

  6. S. Kikkawa, F. Yasuda, M. Koizumi, Mater. Res. Bull. A 20, 1221 (1985)

    Article  Google Scholar 

  7. T. Sanchez Monjaras, A. Gorokhovsky, J.I. Escalante Garcia, J. Am. Ceram. Soc. A 91, 3058 (2008)

    Article  Google Scholar 

  8. H.C. Gulledge, Ind. Eng. Chem. A 52, 117 (1960)

    Article  Google Scholar 

  9. S.R. Tandon, S.D. Pandey, J. Phys. Chem. Solids. A 52, 1101 (1991)

    Article  Google Scholar 

  10. E.V. Tretyachenko, A.V. Gorokhovsky, G.Y. Yurkov, F.S. Fedorov, M.A. Vikulova, D.S. Kovaleva, E.E. Orozaliev, Particuology A 17, 22 (2014)

    Article  Google Scholar 

  11. V.G. Goffman, A.V. Gorokhovsky, N.V. Gorshkov, F.S. Fedorov, E.V. Tretychenko, A.V. Sevrugin, Data in Brief A 4, 193 (2015)

    Article  Google Scholar 

  12. V.G. Goffman, A.V. Gorokhovsky, M.M. Kompan, E.V. Tretyachenko, O.S. Telegina, A.V. Kovnev, F.S. Fedorov, J. Alloys Compd. A 615, S526 (2014)

    Article  Google Scholar 

  13. A.V. Gorokhovsky, E.V. Tretyachenko, V.G. Goffman, N.V. Gorshkov, F.S. Fedorov, A.V. Sevryugin, Inorg. Mater. A 52, 587 (2016)

    Article  Google Scholar 

  14. N. Bao, X. Feng, X. Lu, Z. Yang, J. Mater. Sci. A 37, 3035 (2002)

    Article  Google Scholar 

  15. Y. Park, K. Terasaki, K. Igarashi, T. Shimizu, Adv. Compos. Mater. A 10, 17 (2001)

    Article  Google Scholar 

  16. M.I. Biryukova, I.N. Burmistrov, G.Y. Yurkov, I.N. Mazov, A.A. Ashmarin, A.V. Gorokhovskii, V.I. Gryaznov, V.M. Buznik, Theor. Found. Chem. Eng. A 49, 485 (2015)

    Article  Google Scholar 

  17. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon press, Oxford, 1971)

    Google Scholar 

  18. A.K. Jonscher, Nature A 267, 673 (1977)

    Article  Google Scholar 

  19. J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, Physica B: Condens. Matter A 340, 324 (2003)

    Article  Google Scholar 

  20. U. Akgul, Z. Ergin, M. Sekerci, Y. Atici, Vacuum A 82, 340 (2007)

    Article  Google Scholar 

  21. G.E. Pike, Phys. Rev. B: Condens. Matter. A 6, 1572 (1972)

    Article  Google Scholar 

  22. R. Muccillo, E.N.S. Muccillo, J. Electroceram. A 38, 24 (2017)

    Article  Google Scholar 

  23. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications (Wiley, Canada, 2005), pp. 129–204

    Book  Google Scholar 

  24. A. Feteira, J. Am. Ceram. Soc. A 92, 967 (2009)

    Article  Google Scholar 

  25. J.T. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. A 2, 132 (1990)

    Article  Google Scholar 

  26. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Marcel Dekkar, New York, 1989)

    Google Scholar 

  27. A.V. Gorokhovskii, V.G. Goffman, N.V. Gorshkov, E.V. Tret’yachenko, O.S. Telegina, A.V. Sevryugin, Glass Ceram. A 72, 54 (2015)

    Article  Google Scholar 

  28. S. Sumi, P.P. Rao, P. Koshy, Ceram. Int. A 41, 5992 (2015)

    Article  Google Scholar 

  29. A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, Solid State Ion. A 176, 1439 (2005)

    Article  Google Scholar 

  30. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A. A 104, 1047 (2011)

    Article  Google Scholar 

  31. A.G. Krasnov, I.V. Piir, M.S. Koroleva, N.A. Sekushin, Y.I. Ryabkov, M.M. Piskaykina, V.A. Sadykov, E.M. Sadovskaya, V.V. Pelipenko, N.F. Eremeev, Solid State Ion. A 302, 118 (2017)

    Article  Google Scholar 

  32. R. Haase, Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, 1962)

    Google Scholar 

  33. R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, M.E. dela Cruz, J.P. Ferraris, A.A. Zakhidov, R.H. Baughman, Nano Lett. A 10, 838 (2010)

    Article  Google Scholar 

  34. F.A. Kröger, H.J. Vink, J. Phys. Chem. Solids. A 5, 208 (1958)

    Article  Google Scholar 

  35. A.S. Bondarenko, G.A. Ragoisha, J. Solid State Electrochem. A 9, 845 (2005)

    Article  Google Scholar 

  36. G. Gregori, R. Merkle, J. Maier, Prog. Mater Sci. A 89, 252 (2017)

    Article  Google Scholar 

  37. F.S. Fedorov, A.S. Varezhnikov, I. Kiselev, V.V. Kolesnichenko, I.N. Burmistrov, M. Sommer, D. Fuchs, C. Kübel, A.V. Gorokhovsky, V.V. Sysoev, Anal. Chim. Acta A 897, 81 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Ministry of Education and Science of the Russian Federation (project 4.6197.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gorshkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, N.V., Goffman, V.G., Vikulova, M.A. et al. Temperature-dependence of electrical properties for the ceramic composites based on potassium polytitanates of different chemical composition. J Electroceram 40, 306–315 (2018). https://doi.org/10.1007/s10832-018-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0131-4

Keywords

Navigation