Advertisement

Journal of Electroceramics

, Volume 40, Issue 4, pp 271–292 | Cite as

Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications

  • Cecilia A. Zito
  • Marcelo O. Orlandi
  • Diogo P. Volanti
Feature Article
  • 275 Downloads

Abstract

This article is designed to serve as a roadmap for understanding the fundamentals, the key advantages and the potential applications of microwave-assisted hydrothermal/solvothermal (MAH/S) processing. MAH/S synthesis is a versatile chemical method for preparing a diversity of materials such as metals, semiconductors, electroceramics, graphene and their composites as bulk powders, thin films, or single crystals. The key to improve performance of these materials is achieving controlled morphologies (0 to 3D dimensionality) that favor desirable physical-chemical phenomena at the surface, and in the bulk of these advanced materials. The main features related to the improvement of the thermal and non-thermal effects associated with the use of microwave power concurrently with hydrothermal or solvothermal methods are discussed. Furthermore, the main crystal growth mechanisms (Ostwald ripening and oriented attachment) of these solids in solution under MAH/S treatment are described. Products synthesized by the MAH/S, particularly of interest in the development of gas sensors, batteries, fuel cells, solar cells and photocatalysts are emphasized. We conclude by envisaging new future directions for the use of this rapid and versatile processing approach.

Keywords

Composites Microwave Graphene Metal oxides Nanostructures Crystal growth 

Notes

Acknowledgements

The authors acknowledge São Paulo Research Foundation (FAPESP), grants #2015/50526-4, #2015/05916-9 and #2014/17343-0; National Council for Scientific and Technological Development – CNPQ, grants #447760/2014-9, #444926/2014-3 and #443138/2016-8, and the Coordination for the Improvement of Higher Education Personnel – CAPES.

References

  1. 1.
    F. Gao, Q.Y. Lu, S. Komarneni, Chem. Mater. 17, 856 (2005)Google Scholar
  2. 2.
    J. M. Kong, C. V. Wong, Z. Q. Gao, X. T. Chen, Synth. React. Inorganic, Met. Nano-Metal Chem. (2008), pp. 186–188Google Scholar
  3. 3.
    A.M.R. Galletti, C. Antonetti, A.M. Venezia, G. Giambastiani, Appl. Catal. A Gen. 386, 124 (2010)Google Scholar
  4. 4.
    S.-W. Lee, L.M. Lozano-Sánchez, V. Rodríguez-González, J. Hazard. Mater. 263 Pt 1, 20 (2013)Google Scholar
  5. 5.
    V. Moghimifar, A. Raisi, A. Aroujalian, N.B. Bandpey, Adv. Mater. Res. 829, 846 (2013)Google Scholar
  6. 6.
    W. Cao, L. Chen, Z. Qi, J. Mol. Catal. A Chem. 401, 81 (2015)Google Scholar
  7. 7.
    S. Komarneni, Q. Li, K.M. Stefansson, R. Roy, J. Mater. Res. 8, 3176 (1993)Google Scholar
  8. 8.
    J.P. Cheng, Mater. Res. Innov. 1, 44 (1997)Google Scholar
  9. 9.
    S.F. Liu, I.R. Abothu, S. Komarneni, Mater. Lett. 38, 344 (1999)Google Scholar
  10. 10.
    A. Dias, V.S.T. Ciminelli, Chem. Mater. 15, 1344 (2003)Google Scholar
  11. 11.
    P. Wan, W. Yang, X. Wang, J. Hu, H. Zhang, Sensors Actuators B Chem. 214, 36 (2015)Google Scholar
  12. 12.
    S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Sensors Actuators B Chem. 216, 113 (2015)Google Scholar
  13. 13.
    F. Ren, G. Zhu, P. Ren, K. Wang, X. Cui, X. Yan, Appl. Surf. Sci. 351, 40 (2015)Google Scholar
  14. 14.
    H. Meng, W. Yang, K. Ding, L. Feng, Y. Guan, J. Mater. Chem. A 3, 1174 (2015)Google Scholar
  15. 15.
    S. Khamlich, T. Mokrani, M.S. Dhlamini, B.M. Mothudi, M. Maaza, J. Colloid Interface Sci. 461, 154 (2016)Google Scholar
  16. 16.
    S. Komarneni, Y.D. Noh, J.Y. Kim, S.H. Kim, H. Katsuki, Z. Naturforsch. Sect. B. J. Chem. Sci. 65, 1033 (2010)Google Scholar
  17. 17.
    F.-H. Ko, Y.-C. Hsu, M.-T. Wang, G.S. Huang, Microelectron. Eng. 84, 1300 (2007)Google Scholar
  18. 18.
    C.D. Madhusoodana, R.N. Das, Y. Kameshima, K. Okada, J. Mater. Sci. 41, 1481 (2006)Google Scholar
  19. 19.
    J. Wang, G. Du, R. Zeng, B. Niu, Z. Chen, Z. Guo, S. Dou, Electrochim. Acta 55, 4805 (2010)Google Scholar
  20. 20.
    R.C. Lima, L.R. Macario, J.W.M. Espinosa, V.M. Longo, R. Erlo, N.L. Marana, J.R. Sambrano, M.L. dos Santos, A.P. Moura, P.S. Pizani, J. Andrés, E. Longo, J.A. Varela, J. Phys. Chem. A 112, 8970 (2008)Google Scholar
  21. 21.
    D. Zhang, G. Li, X. Yang, and J. C. Yu, Chem. Commun. (Camb). 4381 (2009)Google Scholar
  22. 22.
    M.S. Anwar, S. Kumar, F. Ahmed, G.W. Kim, B.H. Koo, J. Nanosci. Nanotechnol. 12, 5523 (2012)Google Scholar
  23. 23.
    Z. Zhu, Y. Zhang, Y. Zhang, H. Liu, C. Zhu, Y. Wu, Ceram. Int. 39, 2567 (2013)Google Scholar
  24. 24.
    D.E. Motaung, G.H. Mhlongo, S.S. Nkosi, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, H.M.I. Abdallah, T. Moyo, S.S. Ray, ACS Appl. Mater. Interfaces 6, 8981 (2014)Google Scholar
  25. 25.
    M. Poupon, N. Barrier, S. Petit, S. Clevers, V. Dupray, Inorg. Chem. 54, 5660 (2015)Google Scholar
  26. 26.
    L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Nanoscale 6, 3157 (2014)Google Scholar
  27. 27.
    S.H. Jhung, J.-H. Lee, P.M. Forster, G. Férey, A.K. Cheetham, J.-S. Chang, Chemistry 12, 7899 (2006)Google Scholar
  28. 28.
    W. Liu, L. Ye, X. Liu, L. Yuan, X. Lu, J. Jiang, Inorg. Chem. Commun. 11, 1250 (2008)Google Scholar
  29. 29.
    Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, H. Zhong, CrystEngComm 14, 1760 (2012)Google Scholar
  30. 30.
    J. Huang, C. Xia, L. Cao, X. Zeng, Mater. Sci. Eng. B 150, 187 (2008)Google Scholar
  31. 31.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)Google Scholar
  32. 32.
    L. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten, S.L. Suib, Chem. Mater. 20, 308 (2008)Google Scholar
  33. 33.
    Y. Liu, L. Xia, Y. Lu, S. Dai, M. Takeguchi, H. Hong, Z. Pan, J. Colloid Interface Sci. 381, 24 (2012)Google Scholar
  34. 34.
    C. Yang, F. Xiao, J. Wang, X. Su, Sensors Actuators B Chem. 207, 177 (2015)Google Scholar
  35. 35.
    C.-Y. Wu, D.S. Raja, C.-C. Yang, C.-T. Yeh, Y.-R. Chen, C.-Y. Li, B.-T. Ko, C.-H. Lin, CrystEngComm 16, 9308 (2014)Google Scholar
  36. 36.
    M. Zhou, Y. Hu, Y. Liu, W. Yang, H. Qian, CrystEngComm 14, 7686 (2012)Google Scholar
  37. 37.
    J.K. Vaishnav, S.S. Arbuj, S.B. Rane, D.P. Amalnerkar, RSC Adv. 4, 47637 (2014)Google Scholar
  38. 38.
    T. Cetinkaya, U. Tocoglu, M. Uysal, M.O. Guler, H. Akbulut, Microelectron. Eng. 126, 54 (2014)Google Scholar
  39. 39.
    Z. Cui, Y. Zhang, S. Li, S. Ge, Catal. Commun. 72, 97 (2015)Google Scholar
  40. 40.
    O. Mendiuk, M. Nawrocki, L. Kepinski, Ceram. Int. 42, 1998 (2016)Google Scholar
  41. 41.
    R. Adhikari, G. Gyawali, T.H. Kim, T. Sekino, S.W. Lee, Mater. Lett. 91, 294 (2013)Google Scholar
  42. 42.
    M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Chem. Mater. 20, 5381 (2008)Google Scholar
  43. 43.
    A. Rizzuti, M. Dassisti, P. Mastrorilli, M.C. Sportelli, N. Cioffi, R.A. Picca, E. Agostinelli, G. Varvaro, R. Caliandro, J. Nanopart. Res. 17, 408 (2015)Google Scholar
  44. 44.
    K. Byrappa, T. Ohachi, Crystal Growth Technology (William Andrew Pub. ;Springer, Norwich, N.Y. Berlin; New York, 2003)Google Scholar
  45. 45.
    K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing, 1st ed (Noyes Publications, Park Ridge, 2001)Google Scholar
  46. 46.
    M. Yoshimura, K. Byrappa, J. Mater. Sci. 43, 2085 (2008)Google Scholar
  47. 47.
    K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007)Google Scholar
  48. 48.
    S. Diodati, P. Dolcet, M. Casarin, S. Gross, Chem. Rev. 115(20), 11449 (2015)Google Scholar
  49. 49.
    I. Bilecka, M. Niederberger, Nanoscale 2, 1358 (2010)Google Scholar
  50. 50.
    R.S. Varma, Green Chem. 1, 43 (1999)Google Scholar
  51. 51.
    V. Polshettiwar, R.S. Varma, Acc. Chem. Res. 41, 629 (2008)Google Scholar
  52. 52.
    V. Polshettiwar, M.N. Nadagouda, R.S. Varma, Aust. J. Chem. 62, 16 (2009)Google Scholar
  53. 53.
    M.N. Nadagouda, R.S. Varma, Cryst. Growth Des. 8, 291 (2008)Google Scholar
  54. 54.
    V. Polshettiwar, R.S. Varma, Green Chem. 12, 743 (2010)Google Scholar
  55. 55.
    V. Polshettiwar, R.S. Varma, Chem. Soc. Rev. 37, 1546 (2008)Google Scholar
  56. 56.
    V. Polshettiwar, R.S. Varma, Curr. Opin. Drug Discov. Dev. 10, 723 (2007)Google Scholar
  57. 57.
    B. Baruwati, V. Polshettiwar, R.S. Varma, Green Chem. 11, 926 (2009)Google Scholar
  58. 58.
    C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Chem. Soc. Rev. 27, 213 (1998)Google Scholar
  59. 59.
    D.M.P. Mingos, D.R. Baghurst, Chem. Soc. Rev. 20, 1 (1991)Google Scholar
  60. 60.
    B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light (CEM Publishing, 2002)Google Scholar
  61. 61.
    M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Acc. Chem. Res. 47, 1338 (2014)Google Scholar
  62. 62.
    J.-S. Schanche, Mol. Divers. 7, 291 (2003)Google Scholar
  63. 63.
    A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev. 34, 164 (2005)Google Scholar
  64. 64.
    K. Huang, X. Yang, W. Hua, G. Jia, L. Yang, New J. Chem. 33, 1486 (2009)Google Scholar
  65. 65.
    C. Antonio, R.T. Deam, Phys. Chem. Chem. Phys. 9, 2976 (2007)Google Scholar
  66. 66.
    J. Robinson, S. Kingman, D. Irvine, P. Licence, A. Smith, G. Dimitrakis, D. Obermayer, C.O. Kappe, Phys. Chem. Chem. Phys. 12, 4750 (2010)Google Scholar
  67. 67.
    M.R. Rosana, Y. Tao, A.E. Stiegman, G.B. Dudley, Chem. Sci. 3, 1240 (2012)Google Scholar
  68. 68.
    J.-Y. Li, S. Xiong, J. Pan, Y. Qian, J. Phys. Chem. C (2010)Google Scholar
  69. 69.
    D.P. Volanti, M.O. Orlandi, J. Andres, E. Longo, CrystEngComm 12, 1696 (2010)Google Scholar
  70. 70.
    L. Qin, J. Xu, X. Dong, Q. Pan, Z. Cheng, Q. Xiang, F. Li, Nanotechnology 19, 185705 (2008)Google Scholar
  71. 71.
    A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthofer, E. Rentschler, W. Tremel, CrystEngComm 13, 2487 (2011)Google Scholar
  72. 72.
    S. Xuan, Y.-X.J. Wang, J.C. Yu, K. Cham-Fai Leung, Chem. Mater. 21, 5079 (2009)Google Scholar
  73. 73.
    H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, Sensors Actuators B Chem. 190, 472 (2014)Google Scholar
  74. 74.
    G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensors Actuators B Chem. 179, 61 (2013)Google Scholar
  75. 75.
    Z. Ai, L. Zhang, S. Lee, W. Ho, J. Phys. Chem. C 113, 20896 (2009)Google Scholar
  76. 76.
    X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, Dalton Trans. 44, 7811 (2015)Google Scholar
  77. 77.
    P. Rai, W.-K. Kwak, Y.-T. Yu, ACS Appl. Mater. Interfaces 5, 3026 (2013)Google Scholar
  78. 78.
    R. Krishnapriya, S. Praneetha, A. Vadivel Murugan, CrystEngComm 17, 8353 (2015)Google Scholar
  79. 79.
    J. Chen, H. Bin Yang, J. Miao, H.-Y. Wang, B. Liu, J. Am. Chem. Soc. 136, 15310 (2014)Google Scholar
  80. 80.
    K. Manseki, Y. Kondo, T. Ban, T. Sugiura, T. Yoshida, Dalton Trans. 42, 3295 (2013)Google Scholar
  81. 81.
    G. Wulff, Z. Kryst. Mineral 34, 449 (1901)Google Scholar
  82. 82.
    H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia, Acc. Chem. Res. 46, 1783 (2013)Google Scholar
  83. 83.
    J. Andrés, L. Gracia, A.F. Gouveia, M.M. Ferrer, E. Longo, Nanotechnology 26, 405703 (2015)Google Scholar
  84. 84.
    H. Cölfen, Mesocrystals and Nonclassical Crystallization, 1st ed (John Wiley & Sons Ltd, Chichester, 2008)Google Scholar
  85. 85.
    J.W. Mullin, Crystallization, 4th ed (Butterworth-Heinemann, Oxford, 2001)Google Scholar
  86. 86.
    H. Cölfen, S. Mann, Angew. Chemie Int. Ed. 42, 2350 (2003)Google Scholar
  87. 87.
    W. Ostwald, Z. Phys. Chem. Stochiometrie Verwandtschaftslehre 34 (1900)Google Scholar
  88. 88.
    Z. Wu, S. Yang, W. Wu, Nanoscale 8, 1237 (2016)Google Scholar
  89. 89.
    W. Chen, H. Ruan, Y. Hu, D. Li, Z. Chen, J. Xian, J. Chen, X. Fu, Y. Shao, Y. Zheng, CrystEngComm 14, 6295 (2012)Google Scholar
  90. 90.
    Z. Kozakova, I. Kuritka, N.E. Kazantseva, V. Babayan, M. Pastorek, M. Machovsky, P. Bazant, P. Saha, Dalton Trans. 44, 21099 (2015)Google Scholar
  91. 91.
    A.P. Moura, L.S. Cavalcante, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Adv. Powder Technol. 21, 197 (2010)Google Scholar
  92. 92.
    G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, G.D. Will, Langmuir 22, 2016 (2006)Google Scholar
  93. 93.
    R.L. Penn, J.F. Banfield, Science (80-. ) 281, 969 (1998)Google Scholar
  94. 94.
    M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006)Google Scholar
  95. 95.
    N.T.K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 114, 7610 (2014)Google Scholar
  96. 96.
    R.L. Penn, J.A. Soltis, CrystEngComm 16, 1409 (2014)Google Scholar
  97. 97.
    M. Distaso, M. Mačković, E. Spiecker, W. Peukert, Chemistry 20, 8199 (2014)Google Scholar
  98. 98.
    S.-W. Cao, Y.-J. Zhu, Nanoscale Res. Lett. 6, 1 (2010)Google Scholar
  99. 99.
    C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song, W. Cai, J. Phys. Chem. C 114, 9865 (2010)Google Scholar
  100. 100.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013)Google Scholar
  101. 101.
    T.M. Perfecto, C.A. de Zito, D.P. Volanti, RSC Adv. 6, 105171 (2016)Google Scholar
  102. 102.
    S. Komarneni, R. Roy, Q.H. Li, Mater. Res. Bull. 27, 1393 (1992)Google Scholar
  103. 103.
    M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. 50, 11312 (2011)Google Scholar
  104. 104.
    C.O. Kappe, D. Dallinger, Nat. Rev. Drug Discov. 5, 51 (2006)Google Scholar
  105. 105.
    C.O. Kappe, Chem. Soc. Rev. 37, 1127 (2008)Google Scholar
  106. 106.
    D. Dallinger, C.O. Kappe, Chem. Rev. 107, 2563 (2007)Google Scholar
  107. 107.
    S. Komarneni, D.S. Li, B. Newalkar, H. Katsuki, A.S. Bhalla, Langmuir 18, 5959 (2002)Google Scholar
  108. 108.
    O.V. Belousov, N.V. Belousova, A.V. Sirotina, L.A. Solovyov, A.M. Zhyzhaev, S.M. Zharkov, Y.L. Mikhlin, Langmuir 27, 11697 (2011)Google Scholar
  109. 109.
    H.L. Nguyen, L.E.M. Howard, S.R. Giblin, B.K. Tanner, I. Terry, A.K. Hughes, I.M. Ross, A. Serres, H. Bürckstümmer, J.S.O. Evans, J. Mater. Chem. 15, 5136 (2005)Google Scholar
  110. 110.
    P.N. Njoki, L.V. Solomon, W. Wu, R. Alam, M.M. Maye, Chem. Commun. (Camb.) 47, 10079 (2011)Google Scholar
  111. 111.
    W. Wu, P.N. Njoki, H. Han, H. Zhao, E.A. Schiff, P.S. Lutz, L. Solomon, S. Matthews, M.M. Maye, J. Phys. Chem. C 115, 9933 (2011)Google Scholar
  112. 112.
    Y. Wang, J. Tian, C. Fei, L. Lv, X. Liu, Z. Zhao, G. Cao, J. Phys. Chem. C 118, 25931 (2014)Google Scholar
  113. 113.
    Z. Wang, X. Zhou, Z. Li, Y. Zhuo, Y. Gao, Q. Yang, X. Li, G. Lu, RSC Adv. 4, 23281 (2014)Google Scholar
  114. 114.
    A. Pimentel, D. Nunes, P. Duarte, J. Rodrigues, F.M. Costa, T. Monteiro, R. Martins, E. Fortunato, J. Phys. Chem. C 118, 14629 (2014)Google Scholar
  115. 115.
    X. Li, S. Yao, J. Liu, P. Sun, Y. Sun, Y. Gao, G. Lu, Sensors Actuators B Chem. 220, 68 (2015)Google Scholar
  116. 116.
    K. Manseki, T. Sugiura, T. Yoshida, New J. Chem. 38, 598 (2014)Google Scholar
  117. 117.
    A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem, J.S. Lee, J. Mater. Chem. 20, 1683 (2010)Google Scholar
  118. 118.
    J. Sungpanich, T. Thongtem, S. Thongtem, Ceram. Int. 38, 1051 (2012)Google Scholar
  119. 119.
    T.M. Perfecto, C.A. Zito, D.P. Volanti, CrystEngComm 19, 2733 (2017)Google Scholar
  120. 120.
    P. Rai, H.-M. Song, Y.-S. Kim, M.-K. Song, P.-R. Oh, J.-M. Yoon, Y.-T. Yu, Mater. Lett. 68, 90 (2012)Google Scholar
  121. 121.
    R.A. Silva, M.O. Orlandi, J. Nanomater., 4054058 (2016)Google Scholar
  122. 122.
    F.V. Motta, R.C. Lima, A.P.A. Marques, E.R. Leite, J.A. Varela, E. Longo, Mater. Res. Bull. 45, 1703 (2010)Google Scholar
  123. 123.
    K. Chen, Y. Dong Noh, W. Huang, J. Ma, S. Komarneni, D. Xue, Ceram. Int. 40, 2877 (2014)Google Scholar
  124. 124.
    M. Song, P. Rai, K.-J. Ko, S.-H. Jeon, B.-S. Chon, C.-H. Lee, Y.-T. Yu, RSC Adv. 4, 3529 (2014)Google Scholar
  125. 125.
    P.-S. Shen, Y.-C. Tai, P. Chen, Y.-C. Wu, J. Power Sources 247, 444 (2014)Google Scholar
  126. 126.
    S. Yoon, E.-S. Lee, A. Manthiram, Inorg. Chem. 51, 3505 (2012)Google Scholar
  127. 127.
    Y. Yang, G. Wang, Q. Deng, D.H.L. Ng, H. Zhao, ACS Appl. Mater. Interfaces 6, 3008 (2014)Google Scholar
  128. 128.
    K.F. Moura, J. Maul, A.R. Albuquerque, G.P. Casali, E. Longo, D. Keyson, A.G. Souza, J.R. Sambrano, I.M.G. Santos, J. Solid State Chem. 210, 171 (2014)Google Scholar
  129. 129.
    A.A. Al-Ghamdi, F. Al-Hazmi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, J. Sol-Gel Sci. Technol. 63, 187 (2012)Google Scholar
  130. 130.
    V. Polshettiwar, B. Baruwati, R.S. Varma, ACS Nano 3, 728 (2009)Google Scholar
  131. 131.
    Z. Moorhead-Rosenberg, K.L. Harrison, T. Turner, A. Manthiram, Inorg. Chem. 52, 13087 (2013)Google Scholar
  132. 132.
    S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S. K. Bhattacharya, A. Bhaumik, P. Lemmens, S. K. Pal, Catal. Sci. Technol. (2016)Google Scholar
  133. 133.
    J. Sodtipinta, H.-K. Kim, S.-W. Lee, S.M. Smith, P. Pakawatpanurut, K.-B. Kim, J. Electroceram. 35, 111 (2015)Google Scholar
  134. 134.
    G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, Y. Hayakawa, Dalton Trans. 44, 4485 (2015)Google Scholar
  135. 135.
    T.A. Mulinari, F.A. La Porta, J. Andrés, M. Cilense, J.A. Varela, E. Longo, CrystEngComm 15, 7443 (2013)Google Scholar
  136. 136.
    S. Schmidt, E.T. Kubaski, D.P. Volanti, T. Sequinel, V.D.N. Bezzon, A. Beltrán, S.M. Tebcherani, J.A. Varela, Inorg. Chem. (2015)Google Scholar
  137. 137.
    G. Qiu, S. Dharmarathna, Y. Zhang, N. Opembe, H. Huang, S.L. Suib, J. Phys. Chem. C 116, 468 (2012)Google Scholar
  138. 138.
    D.P. Volanti, A.G. Sato, M.O. Orlandi, J.M.C. Bueno, E. Longo, J. Andres, ChemCatChem 3, 839 (2011)Google Scholar
  139. 139.
    C. Sun, X. Su, F. Xiao, C. Niu, J. Wang, Sensors Actuators B Chem. 157, 681 (2011)Google Scholar
  140. 140.
    S. Chen, Y. Zhao, B. Sun, Z. Ao, X. Xie, Y. Wei, G. Wang, ACS Appl. Mater. Interfaces 7, 3306 (2015)Google Scholar
  141. 141.
    X. Liu, L. Pan, T. Lv, Z. Sun, C.Q. Sun, J. Colloid Interface Sci. 408, 145 (2013)Google Scholar
  142. 142.
    A.E. Souza, S.R. Teixeira, C.M. -Santos, W.H. Schreiner, P.N. Lisboa Filho, E. Longo, J. Mater. Chem. C 2, 7056 (2014)Google Scholar
  143. 143.
    I. Velasco-Davalos, F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, A. Ruediger, AIP Adv. 6, 65117 (2016)Google Scholar
  144. 144.
    G. Kolhatkar, F. Ambriz-Vargas, R. Thomas, A. Ruediger, Cryst. Growth Des. 17, 5697 (2017)Google Scholar
  145. 145.
    V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka, R.V. Ramanujan, ACS Appl. Mater. Interfaces 2, 3037 (2010)Google Scholar
  146. 146.
    L.M. Lozano-Sánchez, S.-W. Lee, T. Sekino, V. Rodríguez-González, CrystEngComm 15, 2359 (2013)Google Scholar
  147. 147.
    T.M. Mazzo, G.S. Do Nascimento Libanori, M.L. Moreira, W. Avansi, V.R. Mastelaro, J.A. Varela, E. Longo, J. Lumin. 165, 130 (2015)Google Scholar
  148. 148.
    M.L. Moreira, J. Andrés, V.R. Mastelaro, J.A. Varela, E. Longo, CrystEngComm 13, 5818 (2011)Google Scholar
  149. 149.
    K. De Keukeleere, J. Feys, M. Meire, J. De Roo, K. De Buysser, P. Lommens, I. Van Driessche, J. Nanopart. Res. 15, 2074 (2013)Google Scholar
  150. 150.
    I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. da Costa, V. Speisser, C. Boeglin, M. Houllé, D. Begin, D. Plee, M.J. Ledoux, C. Pham-Huu, Nano Res. 3, 126 (2010)Google Scholar
  151. 151.
    S. Vadahanambi, J.H. Jung, I.K. Oh, Carbon N. Y. 49, 4449 (2011)Google Scholar
  152. 152.
    H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, Carbon N. Y. 50, 3267 (2012)Google Scholar
  153. 153.
    J. Long, M. Fang, G. Chen, J. Mater. Chem. 21, 10421 (2011)Google Scholar
  154. 154.
    M. M. Viana, M. C. F. S. Lima, J. C. Forsythe, M. Cho, Y. Cheng, G. G. Silva, and M. S. Wong, 26, 978 (2015)Google Scholar
  155. 155.
    S.J.A. Moniz, J. Tang, ChemCatChem 7, 1595 (2015)Google Scholar
  156. 156.
    J. Geng, G.-H. Song, X.-D. Jia, F.-F. Cheng, J.-J. Zhu, J. Phys. Chem. C 116, 4517 (2012)Google Scholar
  157. 157.
    W. Yang, P. Wan, X. Zhou, J. Hu, Y. Guan, L. Feng, ACS Appl. Mater. Interfaces 6, 21093 (2014)Google Scholar
  158. 158.
    J. Huang, G. Tan, H. Ren, W. Yang, C. Xu, C. Zhao, A. Xia, ACS Appl. Mater. Interfaces 6, 21041 (2014)Google Scholar
  159. 159.
    P. Rai, S.M. Majhi, Y.-T. Yu, J.-H. Lee, RSC Adv. 5, 17653 (2015)Google Scholar
  160. 160.
    N. Garino, A. Sacco, M. Castellino, J.A. Muñoz, A. Chiodoni, V. Agostino, V. Margaria, M. Gerosa, G. Massaglia, M. Quaglio, ACS Appl. Mater. Interfaces (2016)Google Scholar
  161. 161.
    D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T.-K. Sham, X. Sun, J. Phys. Chem. C 116, 22149 (2012)Google Scholar
  162. 162.
    C. Zhong, J. Wang, Z. Chen, H. Liu, J. Phys. Chem. C 115, 25115 (2011)Google Scholar
  163. 163.
    L. Li, K.H. Seng, H. Liu, I.P. Nevirkovets, Z. Guo, Electrochim. Acta 87, 801 (2013)Google Scholar
  164. 164.
    C.-L. Liu, K.-H. Chang, C.-C. Hu, W.-C. Wen, J. Power Sources 217, 184 (2012)Google Scholar
  165. 165.
    Q. Xiang, J. Yu, M. Jaroniec, Nano 3, 3670 (2011)Google Scholar
  166. 166.
    L.Q. Lu, Y. Wang, J. Mater. Chem. 21, 17916 (2011)Google Scholar
  167. 167.
    W. Zhou, F. Zhang, S. Liu, J. Wang, X. Du, D. Yin, L. Wang, RSC Adv. 4, 51362 (2014)Google Scholar
  168. 168.
    Z. Wang, Y. Xiao, X. Cui, P. Cheng, B. Wang, Y. Gao, X. Li, T. Yang, T. Zhang, G. Lu, ACS Appl. Mater. Interfaces 6, 3888 (2014)Google Scholar
  169. 169.
    S.-H. Park, H.-K. Kim, K.C. Roh, K.-B. Kim, Electron. Mater. Lett. 11, 282 (2015)Google Scholar
  170. 170.
    Y. Zou, J. Kan, Y. Wang, J. Phys. Chem. C 115, 20747 (2011)Google Scholar
  171. 171.
    L. Kashinath, K. Namratha, K. Byrappa, Appl. Surf. Sci. 357, 1849 (2015)Google Scholar
  172. 172.
    R. Sharma, F. Alam, A.K. Sharma, V. Dutta, S.K. Dhawan, J. Mater. Chem. C 2, 8142 (2014)Google Scholar
  173. 173.
    Y. Gui, Z. Liu, S. Fang, J. Tian, F. Gong, J. Mater. Sci. Mater. Electron. (2015)Google Scholar
  174. 174.
    Y. Gui, J. Zhao, W. Wang, J. Tian, M. Zhao, Mater. Lett. 155, 4 (2015)Google Scholar
  175. 175.
    C.A. Zito, T.M. Perfecto, D.P. Volanti, Sensors Actuators B Chem. 244, 466 (2017)Google Scholar
  176. 176.
    M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C 115, 12763 (2011)Google Scholar
  177. 177.
    Z. Wang, P. Sun, T. Yang, Y. Gao, X. Li, G. Lu, Y. Du, Sensors Actuators B Chem. 186, 734 (2013)Google Scholar
  178. 178.
    Q. Wang, C. Wang, H. Sun, P. Sun, Y. Wang, J. Lin, G. Lu, Sensors Actuators B Chem. 222, 257 (2016)Google Scholar
  179. 179.
    Y.-S. Kim, P. Rai, Y.-T. Yu, Sensors Actuators B Chem. 186, 633 (2013)Google Scholar
  180. 180.
    T. Yanagimoto, Y.-T. Yu, K. Kaneko, Sens. Actuators B 166–167, 31 (2012)Google Scholar
  181. 181.
    L.M. Sikhwivhilu, S. Mpelane, B.W. Mwakikunga, S. Sinha Ray, ACS Appl. Mater. Interfaces 4, 1656 (2012)Google Scholar
  182. 182.
    R.D. Martínez-Orozco, R. Antaño-López, V. Rodríguez-González, New J. Chem. 39, 8044 (2015)Google Scholar
  183. 183.
    P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G. Lu, ACS Appl. Mater. Interfaces 7, 19119 (2015)Google Scholar
  184. 184.
    C. Yang, X. Su, J. Wang, X. Cao, S. Wang, L. Zhang, Sensors Actuators B Chem. 185, 159 (2013)Google Scholar
  185. 185.
    C. Yang, X. Su, F. Xiao, J. Jian, J. Wang, Sensors Actuators B Chem. 158, 299 (2011)Google Scholar
  186. 186.
    C.A. Zito, T.M. Perfecto, D.P. Volanti, Adv. Mater. Interfaces 4, 1700847 (2017)Google Scholar
  187. 187.
    D.P. Volanti, A.A. Felix, M.O. Orlandi, G. Whitfield, D.-J. Yang, E. Longo, H.L. Tuller, J.A. Varela, Adv. Funct. Mater. 23, 1759 (2013)Google Scholar
  188. 188.
    S. Kong, R. Dai, H. Li, W. Sun, Y. Wang, ACS Sustain. Chem. Eng. 3, 1830 (2015)Google Scholar
  189. 189.
    W.X. Chen, J.Y. Lee, Z.L. Liu, Chem. Commun. 2588 (2002)Google Scholar
  190. 190.
    S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S. K. Bhattacharya, A. Bhaumik, P. Lemmens, S. K. Pal, Cat. Sci. Technol. (2016)Google Scholar
  191. 191.
    G. Byzynski, A.P. Pereira, D.P. Volanti, C. Ribeiro, E. Longo, J. Photochem. Photobiol. A Chem. 353, 358 (2018)Google Scholar
  192. 192.
    M. Yang, B. Ding, S. Lee, J.-K. Lee, J. Phys. Chem. C 115, 14534 (2011)Google Scholar
  193. 193.
    L. Liu, K. Hong, X. Ge, D. Liu, M. Xu, J. Phys. Chem. C 118, 15551 (2014)Google Scholar
  194. 194.
    A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M.J. Choi, Y.S. Kang, K. Char, W. Tremel, Energy Environ. Sci. 5, 5392 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cecilia A. Zito
    • 1
  • Marcelo O. Orlandi
    • 2
  • Diogo P. Volanti
    • 1
  1. 1.Laboratory of Materials for Sustainability, IBILCESão Paulo State Univeristy – UNESPSão José do Rio PretoBrazil
  2. 2.Interdisciplinary Laboratory of Ceramics, IQSão Paulo State University – UNESPAraraquaraBrazil

Personalised recommendations