Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications

  • Cecilia A. Zito
  • Marcelo O. Orlandi
  • Diogo P. Volanti
Feature Article
  • 103 Downloads

Abstract

This article is designed to serve as a roadmap for understanding the fundamentals, the key advantages and the potential applications of microwave-assisted hydrothermal/solvothermal (MAH/S) processing. MAH/S synthesis is a versatile chemical method for preparing a diversity of materials such as metals, semiconductors, electroceramics, graphene and their composites as bulk powders, thin films, or single crystals. The key to improve performance of these materials is achieving controlled morphologies (0 to 3D dimensionality) that favor desirable physical-chemical phenomena at the surface, and in the bulk of these advanced materials. The main features related to the improvement of the thermal and non-thermal effects associated with the use of microwave power concurrently with hydrothermal or solvothermal methods are discussed. Furthermore, the main crystal growth mechanisms (Ostwald ripening and oriented attachment) of these solids in solution under MAH/S treatment are described. Products synthesized by the MAH/S, particularly of interest in the development of gas sensors, batteries, fuel cells, solar cells and photocatalysts are emphasized. We conclude by envisaging new future directions for the use of this rapid and versatile processing approach.

Keywords

Composites Microwave Graphene Metal oxides Nanostructures Crystal growth 

Notes

Acknowledgements

The authors acknowledge São Paulo Research Foundation (FAPESP), grants #2015/50526-4, #2015/05916-9 and #2014/17343-0; National Council for Scientific and Technological Development – CNPQ, grants #447760/2014-9, #444926/2014-3 and #443138/2016-8, and the Coordination for the Improvement of Higher Education Personnel – CAPES.

References

  1. 1.
    F. Gao, Q.Y. Lu, S. Komarneni, Chem. Mater. 17, 856 (2005)CrossRefGoogle Scholar
  2. 2.
    J. M. Kong, C. V. Wong, Z. Q. Gao, X. T. Chen, Synth. React. Inorganic, Met. Nano-Metal Chem. (2008), pp. 186–188Google Scholar
  3. 3.
    A.M.R. Galletti, C. Antonetti, A.M. Venezia, G. Giambastiani, Appl. Catal. A Gen. 386, 124 (2010)CrossRefGoogle Scholar
  4. 4.
    S.-W. Lee, L.M. Lozano-Sánchez, V. Rodríguez-González, J. Hazard. Mater. 263 Pt 1, 20 (2013)CrossRefGoogle Scholar
  5. 5.
    V. Moghimifar, A. Raisi, A. Aroujalian, N.B. Bandpey, Adv. Mater. Res. 829, 846 (2013)CrossRefGoogle Scholar
  6. 6.
    W. Cao, L. Chen, Z. Qi, J. Mol. Catal. A Chem. 401, 81 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Komarneni, Q. Li, K.M. Stefansson, R. Roy, J. Mater. Res. 8, 3176 (1993)CrossRefGoogle Scholar
  8. 8.
    J.P. Cheng, Mater. Res. Innov. 1, 44 (1997)CrossRefGoogle Scholar
  9. 9.
    S.F. Liu, I.R. Abothu, S. Komarneni, Mater. Lett. 38, 344 (1999)CrossRefGoogle Scholar
  10. 10.
    A. Dias, V.S.T. Ciminelli, Chem. Mater. 15, 1344 (2003)CrossRefGoogle Scholar
  11. 11.
    P. Wan, W. Yang, X. Wang, J. Hu, H. Zhang, Sensors Actuators B Chem. 214, 36 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Sensors Actuators B Chem. 216, 113 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Ren, G. Zhu, P. Ren, K. Wang, X. Cui, X. Yan, Appl. Surf. Sci. 351, 40 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Meng, W. Yang, K. Ding, L. Feng, Y. Guan, J. Mater. Chem. A 3, 1174 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Khamlich, T. Mokrani, M.S. Dhlamini, B.M. Mothudi, M. Maaza, J. Colloid Interface Sci. 461, 154 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Komarneni, Y.D. Noh, J.Y. Kim, S.H. Kim, H. Katsuki, Z. Naturforsch. Sect. B. J. Chem. Sci. 65, 1033 (2010)Google Scholar
  17. 17.
    F.-H. Ko, Y.-C. Hsu, M.-T. Wang, G.S. Huang, Microelectron. Eng. 84, 1300 (2007)CrossRefGoogle Scholar
  18. 18.
    C.D. Madhusoodana, R.N. Das, Y. Kameshima, K. Okada, J. Mater. Sci. 41, 1481 (2006)CrossRefGoogle Scholar
  19. 19.
    J. Wang, G. Du, R. Zeng, B. Niu, Z. Chen, Z. Guo, S. Dou, Electrochim. Acta 55, 4805 (2010)CrossRefGoogle Scholar
  20. 20.
    R.C. Lima, L.R. Macario, J.W.M. Espinosa, V.M. Longo, R. Erlo, N.L. Marana, J.R. Sambrano, M.L. dos Santos, A.P. Moura, P.S. Pizani, J. Andrés, E. Longo, J.A. Varela, J. Phys. Chem. A 112, 8970 (2008)CrossRefGoogle Scholar
  21. 21.
    D. Zhang, G. Li, X. Yang, and J. C. Yu, Chem. Commun. (Camb). 4381 (2009)Google Scholar
  22. 22.
    M.S. Anwar, S. Kumar, F. Ahmed, G.W. Kim, B.H. Koo, J. Nanosci. Nanotechnol. 12, 5523 (2012)CrossRefGoogle Scholar
  23. 23.
    Z. Zhu, Y. Zhang, Y. Zhang, H. Liu, C. Zhu, Y. Wu, Ceram. Int. 39, 2567 (2013)CrossRefGoogle Scholar
  24. 24.
    D.E. Motaung, G.H. Mhlongo, S.S. Nkosi, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, H.M.I. Abdallah, T. Moyo, S.S. Ray, ACS Appl. Mater. Interfaces 6, 8981 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Poupon, N. Barrier, S. Petit, S. Clevers, V. Dupray, Inorg. Chem. 54, 5660 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Nanoscale 6, 3157 (2014)CrossRefGoogle Scholar
  27. 27.
    S.H. Jhung, J.-H. Lee, P.M. Forster, G. Férey, A.K. Cheetham, J.-S. Chang, Chemistry 12, 7899 (2006)CrossRefGoogle Scholar
  28. 28.
    W. Liu, L. Ye, X. Liu, L. Yuan, X. Lu, J. Jiang, Inorg. Chem. Commun. 11, 1250 (2008)CrossRefGoogle Scholar
  29. 29.
    Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, H. Zhong, CrystEngComm 14, 1760 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Huang, C. Xia, L. Cao, X. Zeng, Mater. Sci. Eng. B 150, 187 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten, S.L. Suib, Chem. Mater. 20, 308 (2008)CrossRefGoogle Scholar
  33. 33.
    Y. Liu, L. Xia, Y. Lu, S. Dai, M. Takeguchi, H. Hong, Z. Pan, J. Colloid Interface Sci. 381, 24 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Yang, F. Xiao, J. Wang, X. Su, Sensors Actuators B Chem. 207, 177 (2015)CrossRefGoogle Scholar
  35. 35.
    C.-Y. Wu, D.S. Raja, C.-C. Yang, C.-T. Yeh, Y.-R. Chen, C.-Y. Li, B.-T. Ko, C.-H. Lin, CrystEngComm 16, 9308 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Zhou, Y. Hu, Y. Liu, W. Yang, H. Qian, CrystEngComm 14, 7686 (2012)CrossRefGoogle Scholar
  37. 37.
    J.K. Vaishnav, S.S. Arbuj, S.B. Rane, D.P. Amalnerkar, RSC Adv. 4, 47637 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Cetinkaya, U. Tocoglu, M. Uysal, M.O. Guler, H. Akbulut, Microelectron. Eng. 126, 54 (2014)CrossRefGoogle Scholar
  39. 39.
    Z. Cui, Y. Zhang, S. Li, S. Ge, Catal. Commun. 72, 97 (2015)CrossRefGoogle Scholar
  40. 40.
    O. Mendiuk, M. Nawrocki, L. Kepinski, Ceram. Int. 42, 1998 (2016)CrossRefGoogle Scholar
  41. 41.
    R. Adhikari, G. Gyawali, T.H. Kim, T. Sekino, S.W. Lee, Mater. Lett. 91, 294 (2013)CrossRefGoogle Scholar
  42. 42.
    M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Chem. Mater. 20, 5381 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Rizzuti, M. Dassisti, P. Mastrorilli, M.C. Sportelli, N. Cioffi, R.A. Picca, E. Agostinelli, G. Varvaro, R. Caliandro, J. Nanopart. Res. 17, 408 (2015)CrossRefGoogle Scholar
  44. 44.
    K. Byrappa, T. Ohachi, Crystal Growth Technology (William Andrew Pub. ;Springer, Norwich, N.Y. Berlin; New York, 2003)Google Scholar
  45. 45.
    K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing, 1st ed (Noyes Publications, Park Ridge, 2001)Google Scholar
  46. 46.
    M. Yoshimura, K. Byrappa, J. Mater. Sci. 43, 2085 (2008)CrossRefGoogle Scholar
  47. 47.
    K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007)CrossRefGoogle Scholar
  48. 48.
    S. Diodati, P. Dolcet, M. Casarin, S. Gross, Chem. Rev. 115(20), 11449 (2015)CrossRefGoogle Scholar
  49. 49.
    I. Bilecka, M. Niederberger, Nanoscale 2, 1358 (2010)CrossRefGoogle Scholar
  50. 50.
    R.S. Varma, Green Chem. 1, 43 (1999)CrossRefGoogle Scholar
  51. 51.
    V. Polshettiwar, R.S. Varma, Acc. Chem. Res. 41, 629 (2008)CrossRefGoogle Scholar
  52. 52.
    V. Polshettiwar, M.N. Nadagouda, R.S. Varma, Aust. J. Chem. 62, 16 (2009)CrossRefGoogle Scholar
  53. 53.
    M.N. Nadagouda, R.S. Varma, Cryst. Growth Des. 8, 291 (2008)CrossRefGoogle Scholar
  54. 54.
    V. Polshettiwar, R.S. Varma, Green Chem. 12, 743 (2010)CrossRefGoogle Scholar
  55. 55.
    V. Polshettiwar, R.S. Varma, Chem. Soc. Rev. 37, 1546 (2008)CrossRefGoogle Scholar
  56. 56.
    V. Polshettiwar, R.S. Varma, Curr. Opin. Drug Discov. Dev. 10, 723 (2007)Google Scholar
  57. 57.
    B. Baruwati, V. Polshettiwar, R.S. Varma, Green Chem. 11, 926 (2009)CrossRefGoogle Scholar
  58. 58.
    C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Chem. Soc. Rev. 27, 213 (1998)CrossRefGoogle Scholar
  59. 59.
    D.M.P. Mingos, D.R. Baghurst, Chem. Soc. Rev. 20, 1 (1991)CrossRefGoogle Scholar
  60. 60.
    B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light (CEM Publishing, 2002)Google Scholar
  61. 61.
    M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Acc. Chem. Res. 47, 1338 (2014)CrossRefGoogle Scholar
  62. 62.
    J.-S. Schanche, Mol. Divers. 7, 291 (2003)CrossRefGoogle Scholar
  63. 63.
    A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev. 34, 164 (2005)CrossRefGoogle Scholar
  64. 64.
    K. Huang, X. Yang, W. Hua, G. Jia, L. Yang, New J. Chem. 33, 1486 (2009)CrossRefGoogle Scholar
  65. 65.
    C. Antonio, R.T. Deam, Phys. Chem. Chem. Phys. 9, 2976 (2007)CrossRefGoogle Scholar
  66. 66.
    J. Robinson, S. Kingman, D. Irvine, P. Licence, A. Smith, G. Dimitrakis, D. Obermayer, C.O. Kappe, Phys. Chem. Chem. Phys. 12, 4750 (2010)CrossRefGoogle Scholar
  67. 67.
    M.R. Rosana, Y. Tao, A.E. Stiegman, G.B. Dudley, Chem. Sci. 3, 1240 (2012)CrossRefGoogle Scholar
  68. 68.
    J.-Y. Li, S. Xiong, J. Pan, Y. Qian, J. Phys. Chem. C (2010)Google Scholar
  69. 69.
    D.P. Volanti, M.O. Orlandi, J. Andres, E. Longo, CrystEngComm 12, 1696 (2010)CrossRefGoogle Scholar
  70. 70.
    L. Qin, J. Xu, X. Dong, Q. Pan, Z. Cheng, Q. Xiang, F. Li, Nanotechnology 19, 185705 (2008)CrossRefGoogle Scholar
  71. 71.
    A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthofer, E. Rentschler, W. Tremel, CrystEngComm 13, 2487 (2011)CrossRefGoogle Scholar
  72. 72.
    S. Xuan, Y.-X.J. Wang, J.C. Yu, K. Cham-Fai Leung, Chem. Mater. 21, 5079 (2009)CrossRefGoogle Scholar
  73. 73.
    H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, Sensors Actuators B Chem. 190, 472 (2014)CrossRefGoogle Scholar
  74. 74.
    G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensors Actuators B Chem. 179, 61 (2013)CrossRefGoogle Scholar
  75. 75.
    Z. Ai, L. Zhang, S. Lee, W. Ho, J. Phys. Chem. C 113, 20896 (2009)CrossRefGoogle Scholar
  76. 76.
    X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, Dalton Trans. 44, 7811 (2015)CrossRefGoogle Scholar
  77. 77.
    P. Rai, W.-K. Kwak, Y.-T. Yu, ACS Appl. Mater. Interfaces 5, 3026 (2013)CrossRefGoogle Scholar
  78. 78.
    R. Krishnapriya, S. Praneetha, A. Vadivel Murugan, CrystEngComm 17, 8353 (2015)CrossRefGoogle Scholar
  79. 79.
    J. Chen, H. Bin Yang, J. Miao, H.-Y. Wang, B. Liu, J. Am. Chem. Soc. 136, 15310 (2014)CrossRefGoogle Scholar
  80. 80.
    K. Manseki, Y. Kondo, T. Ban, T. Sugiura, T. Yoshida, Dalton Trans. 42, 3295 (2013)CrossRefGoogle Scholar
  81. 81.
    G. Wulff, Z. Kryst. Mineral 34, 449 (1901)Google Scholar
  82. 82.
    H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia, Acc. Chem. Res. 46, 1783 (2013)CrossRefGoogle Scholar
  83. 83.
    J. Andrés, L. Gracia, A.F. Gouveia, M.M. Ferrer, E. Longo, Nanotechnology 26, 405703 (2015)CrossRefGoogle Scholar
  84. 84.
    H. Cölfen, Mesocrystals and Nonclassical Crystallization, 1st ed (John Wiley & Sons Ltd, Chichester, 2008)CrossRefGoogle Scholar
  85. 85.
    J.W. Mullin, Crystallization, 4th ed (Butterworth-Heinemann, Oxford, 2001)Google Scholar
  86. 86.
    H. Cölfen, S. Mann, Angew. Chemie Int. Ed. 42, 2350 (2003)CrossRefGoogle Scholar
  87. 87.
    W. Ostwald, Z. Phys. Chem. Stochiometrie Verwandtschaftslehre 34 (1900)Google Scholar
  88. 88.
    Z. Wu, S. Yang, W. Wu, Nanoscale 8, 1237 (2016)CrossRefGoogle Scholar
  89. 89.
    W. Chen, H. Ruan, Y. Hu, D. Li, Z. Chen, J. Xian, J. Chen, X. Fu, Y. Shao, Y. Zheng, CrystEngComm 14, 6295 (2012)CrossRefGoogle Scholar
  90. 90.
    Z. Kozakova, I. Kuritka, N.E. Kazantseva, V. Babayan, M. Pastorek, M. Machovsky, P. Bazant, P. Saha, Dalton Trans. 44, 21099 (2015)CrossRefGoogle Scholar
  91. 91.
    A.P. Moura, L.S. Cavalcante, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Adv. Powder Technol. 21, 197 (2010)CrossRefGoogle Scholar
  92. 92.
    G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, G.D. Will, Langmuir 22, 2016 (2006)CrossRefGoogle Scholar
  93. 93.
    R.L. Penn, J.F. Banfield, Science (80-. ) 281, 969 (1998)CrossRefGoogle Scholar
  94. 94.
    M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006)CrossRefGoogle Scholar
  95. 95.
    N.T.K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 114, 7610 (2014)CrossRefGoogle Scholar
  96. 96.
    R.L. Penn, J.A. Soltis, CrystEngComm 16, 1409 (2014)CrossRefGoogle Scholar
  97. 97.
    M. Distaso, M. Mačković, E. Spiecker, W. Peukert, Chemistry 20, 8199 (2014)CrossRefGoogle Scholar
  98. 98.
    S.-W. Cao, Y.-J. Zhu, Nanoscale Res. Lett. 6, 1 (2010)Google Scholar
  99. 99.
    C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song, W. Cai, J. Phys. Chem. C 114, 9865 (2010)CrossRefGoogle Scholar
  100. 100.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013)CrossRefGoogle Scholar
  101. 101.
    T.M. Perfecto, C.A. de Zito, D.P. Volanti, RSC Adv. 6, 105171 (2016)CrossRefGoogle Scholar
  102. 102.
    S. Komarneni, R. Roy, Q.H. Li, Mater. Res. Bull. 27, 1393 (1992)CrossRefGoogle Scholar
  103. 103.
    M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. 50, 11312 (2011)CrossRefGoogle Scholar
  104. 104.
    C.O. Kappe, D. Dallinger, Nat. Rev. Drug Discov. 5, 51 (2006)CrossRefGoogle Scholar
  105. 105.
    C.O. Kappe, Chem. Soc. Rev. 37, 1127 (2008)CrossRefGoogle Scholar
  106. 106.
    D. Dallinger, C.O. Kappe, Chem. Rev. 107, 2563 (2007)CrossRefGoogle Scholar
  107. 107.
    S. Komarneni, D.S. Li, B. Newalkar, H. Katsuki, A.S. Bhalla, Langmuir 18, 5959 (2002)CrossRefGoogle Scholar
  108. 108.
    O.V. Belousov, N.V. Belousova, A.V. Sirotina, L.A. Solovyov, A.M. Zhyzhaev, S.M. Zharkov, Y.L. Mikhlin, Langmuir 27, 11697 (2011)CrossRefGoogle Scholar
  109. 109.
    H.L. Nguyen, L.E.M. Howard, S.R. Giblin, B.K. Tanner, I. Terry, A.K. Hughes, I.M. Ross, A. Serres, H. Bürckstümmer, J.S.O. Evans, J. Mater. Chem. 15, 5136 (2005)CrossRefGoogle Scholar
  110. 110.
    P.N. Njoki, L.V. Solomon, W. Wu, R. Alam, M.M. Maye, Chem. Commun. (Camb.) 47, 10079 (2011)CrossRefGoogle Scholar
  111. 111.
    W. Wu, P.N. Njoki, H. Han, H. Zhao, E.A. Schiff, P.S. Lutz, L. Solomon, S. Matthews, M.M. Maye, J. Phys. Chem. C 115, 9933 (2011)CrossRefGoogle Scholar
  112. 112.
    Y. Wang, J. Tian, C. Fei, L. Lv, X. Liu, Z. Zhao, G. Cao, J. Phys. Chem. C 118, 25931 (2014)CrossRefGoogle Scholar
  113. 113.
    Z. Wang, X. Zhou, Z. Li, Y. Zhuo, Y. Gao, Q. Yang, X. Li, G. Lu, RSC Adv. 4, 23281 (2014)CrossRefGoogle Scholar
  114. 114.
    A. Pimentel, D. Nunes, P. Duarte, J. Rodrigues, F.M. Costa, T. Monteiro, R. Martins, E. Fortunato, J. Phys. Chem. C 118, 14629 (2014)CrossRefGoogle Scholar
  115. 115.
    X. Li, S. Yao, J. Liu, P. Sun, Y. Sun, Y. Gao, G. Lu, Sensors Actuators B Chem. 220, 68 (2015)CrossRefGoogle Scholar
  116. 116.
    K. Manseki, T. Sugiura, T. Yoshida, New J. Chem. 38, 598 (2014)CrossRefGoogle Scholar
  117. 117.
    A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem, J.S. Lee, J. Mater. Chem. 20, 1683 (2010)CrossRefGoogle Scholar
  118. 118.
    J. Sungpanich, T. Thongtem, S. Thongtem, Ceram. Int. 38, 1051 (2012)CrossRefGoogle Scholar
  119. 119.
    T.M. Perfecto, C.A. Zito, D.P. Volanti, CrystEngComm 19, 2733 (2017)CrossRefGoogle Scholar
  120. 120.
    P. Rai, H.-M. Song, Y.-S. Kim, M.-K. Song, P.-R. Oh, J.-M. Yoon, Y.-T. Yu, Mater. Lett. 68, 90 (2012)CrossRefGoogle Scholar
  121. 121.
    R.A. Silva, M.O. Orlandi, J. Nanomater., 4054058 (2016)Google Scholar
  122. 122.
    F.V. Motta, R.C. Lima, A.P.A. Marques, E.R. Leite, J.A. Varela, E. Longo, Mater. Res. Bull. 45, 1703 (2010)CrossRefGoogle Scholar
  123. 123.
    K. Chen, Y. Dong Noh, W. Huang, J. Ma, S. Komarneni, D. Xue, Ceram. Int. 40, 2877 (2014)CrossRefGoogle Scholar
  124. 124.
    M. Song, P. Rai, K.-J. Ko, S.-H. Jeon, B.-S. Chon, C.-H. Lee, Y.-T. Yu, RSC Adv. 4, 3529 (2014)CrossRefGoogle Scholar
  125. 125.
    P.-S. Shen, Y.-C. Tai, P. Chen, Y.-C. Wu, J. Power Sources 247, 444 (2014)CrossRefGoogle Scholar
  126. 126.
    S. Yoon, E.-S. Lee, A. Manthiram, Inorg. Chem. 51, 3505 (2012)CrossRefGoogle Scholar
  127. 127.
    Y. Yang, G. Wang, Q. Deng, D.H.L. Ng, H. Zhao, ACS Appl. Mater. Interfaces 6, 3008 (2014)CrossRefGoogle Scholar
  128. 128.
    K.F. Moura, J. Maul, A.R. Albuquerque, G.P. Casali, E. Longo, D. Keyson, A.G. Souza, J.R. Sambrano, I.M.G. Santos, J. Solid State Chem. 210, 171 (2014)CrossRefGoogle Scholar
  129. 129.
    A.A. Al-Ghamdi, F. Al-Hazmi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, J. Sol-Gel Sci. Technol. 63, 187 (2012)CrossRefGoogle Scholar
  130. 130.
    V. Polshettiwar, B. Baruwati, R.S. Varma, ACS Nano 3, 728 (2009)CrossRefGoogle Scholar
  131. 131.
    Z. Moorhead-Rosenberg, K.L. Harrison, T. Turner, A. Manthiram, Inorg. Chem. 52, 13087 (2013)CrossRefGoogle Scholar
  132. 132.
    S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S. K. Bhattacharya, A. Bhaumik, P. Lemmens, S. K. Pal, Catal. Sci. Technol. (2016)Google Scholar
  133. 133.
    J. Sodtipinta, H.-K. Kim, S.-W. Lee, S.M. Smith, P. Pakawatpanurut, K.-B. Kim, J. Electroceram. 35, 111 (2015)CrossRefGoogle Scholar
  134. 134.
    G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, Y. Hayakawa, Dalton Trans. 44, 4485 (2015)CrossRefGoogle Scholar
  135. 135.
    T.A. Mulinari, F.A. La Porta, J. Andrés, M. Cilense, J.A. Varela, E. Longo, CrystEngComm 15, 7443 (2013)CrossRefGoogle Scholar
  136. 136.
    S. Schmidt, E.T. Kubaski, D.P. Volanti, T. Sequinel, V.D.N. Bezzon, A. Beltrán, S.M. Tebcherani, J.A. Varela, Inorg. Chem. (2015)Google Scholar
  137. 137.
    G. Qiu, S. Dharmarathna, Y. Zhang, N. Opembe, H. Huang, S.L. Suib, J. Phys. Chem. C 116, 468 (2012)CrossRefGoogle Scholar
  138. 138.
    D.P. Volanti, A.G. Sato, M.O. Orlandi, J.M.C. Bueno, E. Longo, J. Andres, ChemCatChem 3, 839 (2011)CrossRefGoogle Scholar
  139. 139.
    C. Sun, X. Su, F. Xiao, C. Niu, J. Wang, Sensors Actuators B Chem. 157, 681 (2011)CrossRefGoogle Scholar
  140. 140.
    S. Chen, Y. Zhao, B. Sun, Z. Ao, X. Xie, Y. Wei, G. Wang, ACS Appl. Mater. Interfaces 7, 3306 (2015)CrossRefGoogle Scholar
  141. 141.
    X. Liu, L. Pan, T. Lv, Z. Sun, C.Q. Sun, J. Colloid Interface Sci. 408, 145 (2013)CrossRefGoogle Scholar
  142. 142.
    A.E. Souza, S.R. Teixeira, C.M. -Santos, W.H. Schreiner, P.N. Lisboa Filho, E. Longo, J. Mater. Chem. C 2, 7056 (2014)CrossRefGoogle Scholar
  143. 143.
    I. Velasco-Davalos, F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, A. Ruediger, AIP Adv. 6, 65117 (2016)CrossRefGoogle Scholar
  144. 144.
    G. Kolhatkar, F. Ambriz-Vargas, R. Thomas, A. Ruediger, Cryst. Growth Des. 17, 5697 (2017)CrossRefGoogle Scholar
  145. 145.
    V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka, R.V. Ramanujan, ACS Appl. Mater. Interfaces 2, 3037 (2010)CrossRefGoogle Scholar
  146. 146.
    L.M. Lozano-Sánchez, S.-W. Lee, T. Sekino, V. Rodríguez-González, CrystEngComm 15, 2359 (2013)CrossRefGoogle Scholar
  147. 147.
    T.M. Mazzo, G.S. Do Nascimento Libanori, M.L. Moreira, W. Avansi, V.R. Mastelaro, J.A. Varela, E. Longo, J. Lumin. 165, 130 (2015)CrossRefGoogle Scholar
  148. 148.
    M.L. Moreira, J. Andrés, V.R. Mastelaro, J.A. Varela, E. Longo, CrystEngComm 13, 5818 (2011)CrossRefGoogle Scholar
  149. 149.
    K. De Keukeleere, J. Feys, M. Meire, J. De Roo, K. De Buysser, P. Lommens, I. Van Driessche, J. Nanopart. Res. 15, 2074 (2013)CrossRefGoogle Scholar
  150. 150.
    I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. da Costa, V. Speisser, C. Boeglin, M. Houllé, D. Begin, D. Plee, M.J. Ledoux, C. Pham-Huu, Nano Res. 3, 126 (2010)CrossRefGoogle Scholar
  151. 151.
    S. Vadahanambi, J.H. Jung, I.K. Oh, Carbon N. Y. 49, 4449 (2011)CrossRefGoogle Scholar
  152. 152.
    H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, Carbon N. Y. 50, 3267 (2012)CrossRefGoogle Scholar
  153. 153.
    J. Long, M. Fang, G. Chen, J. Mater. Chem. 21, 10421 (2011)CrossRefGoogle Scholar
  154. 154.
    M. M. Viana, M. C. F. S. Lima, J. C. Forsythe, M. Cho, Y. Cheng, G. G. Silva, and M. S. Wong, 26, 978 (2015)Google Scholar
  155. 155.
    S.J.A. Moniz, J. Tang, ChemCatChem 7, 1595 (2015)CrossRefGoogle Scholar
  156. 156.
    J. Geng, G.-H. Song, X.-D. Jia, F.-F. Cheng, J.-J. Zhu, J. Phys. Chem. C 116, 4517 (2012)CrossRefGoogle Scholar
  157. 157.
    W. Yang, P. Wan, X. Zhou, J. Hu, Y. Guan, L. Feng, ACS Appl. Mater. Interfaces 6, 21093 (2014)CrossRefGoogle Scholar
  158. 158.
    J. Huang, G. Tan, H. Ren, W. Yang, C. Xu, C. Zhao, A. Xia, ACS Appl. Mater. Interfaces 6, 21041 (2014)CrossRefGoogle Scholar
  159. 159.
    P. Rai, S.M. Majhi, Y.-T. Yu, J.-H. Lee, RSC Adv. 5, 17653 (2015)CrossRefGoogle Scholar
  160. 160.
    N. Garino, A. Sacco, M. Castellino, J.A. Muñoz, A. Chiodoni, V. Agostino, V. Margaria, M. Gerosa, G. Massaglia, M. Quaglio, ACS Appl. Mater. Interfaces (2016)Google Scholar
  161. 161.
    D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T.-K. Sham, X. Sun, J. Phys. Chem. C 116, 22149 (2012)CrossRefGoogle Scholar
  162. 162.
    C. Zhong, J. Wang, Z. Chen, H. Liu, J. Phys. Chem. C 115, 25115 (2011)CrossRefGoogle Scholar
  163. 163.
    L. Li, K.H. Seng, H. Liu, I.P. Nevirkovets, Z. Guo, Electrochim. Acta 87, 801 (2013)CrossRefGoogle Scholar
  164. 164.
    C.-L. Liu, K.-H. Chang, C.-C. Hu, W.-C. Wen, J. Power Sources 217, 184 (2012)CrossRefGoogle Scholar
  165. 165.
    Q. Xiang, J. Yu, M. Jaroniec, Nano 3, 3670 (2011)Google Scholar
  166. 166.
    L.Q. Lu, Y. Wang, J. Mater. Chem. 21, 17916 (2011)CrossRefGoogle Scholar
  167. 167.
    W. Zhou, F. Zhang, S. Liu, J. Wang, X. Du, D. Yin, L. Wang, RSC Adv. 4, 51362 (2014)CrossRefGoogle Scholar
  168. 168.
    Z. Wang, Y. Xiao, X. Cui, P. Cheng, B. Wang, Y. Gao, X. Li, T. Yang, T. Zhang, G. Lu, ACS Appl. Mater. Interfaces 6, 3888 (2014)CrossRefGoogle Scholar
  169. 169.
    S.-H. Park, H.-K. Kim, K.C. Roh, K.-B. Kim, Electron. Mater. Lett. 11, 282 (2015)CrossRefGoogle Scholar
  170. 170.
    Y. Zou, J. Kan, Y. Wang, J. Phys. Chem. C 115, 20747 (2011)CrossRefGoogle Scholar
  171. 171.
    L. Kashinath, K. Namratha, K. Byrappa, Appl. Surf. Sci. 357, 1849 (2015)CrossRefGoogle Scholar
  172. 172.
    R. Sharma, F. Alam, A.K. Sharma, V. Dutta, S.K. Dhawan, J. Mater. Chem. C 2, 8142 (2014)CrossRefGoogle Scholar
  173. 173.
    Y. Gui, Z. Liu, S. Fang, J. Tian, F. Gong, J. Mater. Sci. Mater. Electron. (2015)Google Scholar
  174. 174.
    Y. Gui, J. Zhao, W. Wang, J. Tian, M. Zhao, Mater. Lett. 155, 4 (2015)CrossRefGoogle Scholar
  175. 175.
    C.A. Zito, T.M. Perfecto, D.P. Volanti, Sensors Actuators B Chem. 244, 466 (2017)CrossRefGoogle Scholar
  176. 176.
    M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C 115, 12763 (2011)CrossRefGoogle Scholar
  177. 177.
    Z. Wang, P. Sun, T. Yang, Y. Gao, X. Li, G. Lu, Y. Du, Sensors Actuators B Chem. 186, 734 (2013)CrossRefGoogle Scholar
  178. 178.
    Q. Wang, C. Wang, H. Sun, P. Sun, Y. Wang, J. Lin, G. Lu, Sensors Actuators B Chem. 222, 257 (2016)CrossRefGoogle Scholar
  179. 179.
    Y.-S. Kim, P. Rai, Y.-T. Yu, Sensors Actuators B Chem. 186, 633 (2013)CrossRefGoogle Scholar
  180. 180.
    T. Yanagimoto, Y.-T. Yu, K. Kaneko, Sens. Actuators B 166–167, 31 (2012)CrossRefGoogle Scholar
  181. 181.
    L.M. Sikhwivhilu, S. Mpelane, B.W. Mwakikunga, S. Sinha Ray, ACS Appl. Mater. Interfaces 4, 1656 (2012)CrossRefGoogle Scholar
  182. 182.
    R.D. Martínez-Orozco, R. Antaño-López, V. Rodríguez-González, New J. Chem. 39, 8044 (2015)CrossRefGoogle Scholar
  183. 183.
    P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G. Lu, ACS Appl. Mater. Interfaces 7, 19119 (2015)CrossRefGoogle Scholar
  184. 184.
    C. Yang, X. Su, J. Wang, X. Cao, S. Wang, L. Zhang, Sensors Actuators B Chem. 185, 159 (2013)CrossRefGoogle Scholar
  185. 185.
    C. Yang, X. Su, F. Xiao, J. Jian, J. Wang, Sensors Actuators B Chem. 158, 299 (2011)CrossRefGoogle Scholar
  186. 186.
    C.A. Zito, T.M. Perfecto, D.P. Volanti, Adv. Mater. Interfaces 4, 1700847 (2017)CrossRefGoogle Scholar
  187. 187.
    D.P. Volanti, A.A. Felix, M.O. Orlandi, G. Whitfield, D.-J. Yang, E. Longo, H.L. Tuller, J.A. Varela, Adv. Funct. Mater. 23, 1759 (2013)CrossRefGoogle Scholar
  188. 188.
    S. Kong, R. Dai, H. Li, W. Sun, Y. Wang, ACS Sustain. Chem. Eng. 3, 1830 (2015)CrossRefGoogle Scholar
  189. 189.
    W.X. Chen, J.Y. Lee, Z.L. Liu, Chem. Commun. 2588 (2002)Google Scholar
  190. 190.
    S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S. K. Bhattacharya, A. Bhaumik, P. Lemmens, S. K. Pal, Cat. Sci. Technol. (2016)Google Scholar
  191. 191.
    G. Byzynski, A.P. Pereira, D.P. Volanti, C. Ribeiro, E. Longo, J. Photochem. Photobiol. A Chem. 353, 358 (2018)CrossRefGoogle Scholar
  192. 192.
    M. Yang, B. Ding, S. Lee, J.-K. Lee, J. Phys. Chem. C 115, 14534 (2011)CrossRefGoogle Scholar
  193. 193.
    L. Liu, K. Hong, X. Ge, D. Liu, M. Xu, J. Phys. Chem. C 118, 15551 (2014)CrossRefGoogle Scholar
  194. 194.
    A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M.J. Choi, Y.S. Kang, K. Char, W. Tremel, Energy Environ. Sci. 5, 5392 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cecilia A. Zito
    • 1
  • Marcelo O. Orlandi
    • 2
  • Diogo P. Volanti
    • 1
  1. 1.Laboratory of Materials for Sustainability, IBILCESão Paulo State Univeristy – UNESPSão José do Rio PretoBrazil
  2. 2.Interdisciplinary Laboratory of Ceramics, IQSão Paulo State University – UNESPAraraquaraBrazil

Personalised recommendations