Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication

Abstract

Emerging non-volatile memory technologies are promising due to their anticipated capacity benefits, non-volatility, and zero idle energy. One of the most promising candidates is resistive random access memory (RRAM) based on resistive switching (RS). This paper reviews the development of RS device technology including the fundamental physics, material engineering, three-dimension (3D) integration, and bottom-up fabrication. The device operation, physical mechanisms for resistive switching, reliability metrics, and memory cell selector candidates are summarized from the recent advancement in both industry and academia. Options for 3D memory array architectures are presented for the mass storage application. Finally, the potential application of bottom-up fabrication approaches for effective manufacturing is introduced.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. 1.

    R. Waser, R. Dittmann, C. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  2. 2.

    H.-S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu, P.S. Chen, B. Lee, F.T. Chen, M.J. Tsai, Proc. IEEE 100, 1951 (2012)

    Article  Google Scholar 

  3. 3.

    C. Ho, H.H. Huang, M.T. Lee, C.L. Hsu, T.Y. Lai, W.C. Chiu, M. Lee, T.H. Chou, I. Yang, M.C. Chen, C.S. Wu, K.H. Chiang, Y. Der Yao, C. Hu, F.L. Yang, In IEEE Int. Electron Devices Meet. (2012), p. 2.8.1–2.8.4

  4. 4.

    T.Y. Liu, T.H. Yan, R. Scheuerlein, Y. Chen, J.K. Lee, G. Balakrishnan, G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, A. Al-Shamma, C. Chen, M. Gupta, G. Hilton, A. Kathuria, V. Lai, M. Matsumoto, A. Nigam, A. Pai, J. Pakhale, C.H. Siau, X. Wu, Y. Yin, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, H. Inoue, L. Fasoli, In 2013 I.E. Int. Solid-State Circuits Conf. (2013), pp. 210–211

  5. 5.

    W. Otsuka, K. Miyata, M. Kitagawa, K. Tsutsui, T. Tsushima, H. Yoshihara, T. Namise, Y. Terao, K. Ogata, In 2011 I.E. Int. Solid-State Circuits Conf. (2011), pp. 210–211

  6. 6.

    R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, G. Hush, In 2014 I.E. Int. Solid-State Circuits Conf. (2014), pp. 338–339

  7. 7.

    G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, A. Toffoli, M. Bernard, A. Roule, F. Pierre, C. Licitra, B. De Salvo, L. Perniola, In IEEE Int. Electron Devices Meet. (2014), p. 6.1.1–6.1.4.

  8. 8.

    E. Vianello, O. Thomas, G. Molas, O. Turkyilmaz, N. Jovanović, D. Garbin, G. Palma, M. Alayan, C. Nguyen, J. Coignus, B. Giraud, T. Benoist, M. Reyboz, A. Toffoli, C. Charpin, F. Clermidy, and L. Perniola, In IEEE Int. Electron Devices Meet. (2014), p. 6.3.1–6.3.4.

  9. 9.

    C. Nail, G. Molas, P. Blaise, G. Piccolboni, B. Sklenard, C. Cagli, M. Bernard, A. Roule, M. Azzaz, E. Vianello, In IEEE Int. Electron Devices Meet. (2016), p. 4.5.1–4.5.4

  10. 10.

    A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. El Hajjam, R. Crochemore, J.F. Nodin, P. Olivo, and L. Perniola, In IEEE Int. Electron Devices Meet. (2016), p. 4.7.1–4.7.4

  11. 11.

    D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat, G. Ghibaudo, B. DeSalvo, L. Perniola, IEEE Trans. Electron Devices 62, 2494 (2015)

    Article  Google Scholar 

  12. 12.

    A. Benoist, S. Blonkowski, S. Jeannot, S. Denorme, J. Damiens, J. Berger, P. Candelier, E. Vianello, H. Grampeix, J.F. Nodin, E. Jalaguier, L. Perniola, and B. Allard, In IEEE Int. Reliab. Phys. Symp. (2014), p. 2E.6.1-2E.6.5

  13. 13.

    T. Cabout, L. Perniola, V. Jousseaume, H. Grampeix, J.F. Nodin, A. Toffoli, M. Guillermet, E. Jalaguier, E. Vianello, G. Molas, G. Reimbold, B. De Salvo, T. Diokh, P. Candelier, O. Pirrotta, A. Padovani, L. Larcher, M. Bocquet, C. Muller, In 2013 5th IEEE Int. Mem. Work. (2013), pp. 116–119

  14. 14.

    B. Traoré, P. Blaise, E. Vianello, H. Grampeix, A. Bonnevialle, E. Jalaguier, G. Molas, S. Jeannot, L. Perniola, B. DeSalvo, Y. Nishi, In IEEE Int. Electron Devices Meet. (2015), p. 21.5.1–21.5.4

  15. 15.

    B. Traoré, P. Blaise, E. Vianello, L. Perniola, B. De Salvo, Y. Nishi, IEEE Trans. Electron Devices 63, 360 (2016)

    Article  Google Scholar 

  16. 16.

    G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, J. Vac, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32, 40802 (2014)

    Google Scholar 

  17. 17.

    B. Hudec, C.W. Hsu, I.T. Wang, W.L. Lai, C.C. Chang, T. Wang, K. Fröhlich, C.H. Ho, C.H. Lin, T.H. Hou, Sci. China Inf. Sci. 59, 61403 (2016)

  18. 18.

    C.L. Lo, T.H. Hou, M.C. Chen, J.J. Huang, IEEE Trans. Electron Devices 60, 420 (2013)

    Article  Google Scholar 

  19. 19.

    A. Chen, IEEE Trans. Electron Devices 62, 2845 (2015)

    Article  Google Scholar 

  20. 20.

    A. Chen, IEEE Trans. Electron Devices 60, 1318 (2013)

    Article  Google Scholar 

  21. 21.

    B. Govoreanu, L. Zhang, M. Jurczak, In 2015 I.E. Int. Conf. IC Des. Technol. (2015), pp. 1–4

  22. 22.

    J.J. Huang, Y.M. Tseng, W.C. Luo, C.W. Hsu, T.H. Hou, In IEEE Int. Electron Devices Meet. (2011), p. 31.7.1–31.7.4

  23. 23.

    Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS) (2013)

  24. 24.

    S.-S. Sheu, P.-C. Chiang, W.-P. Lin, H.-Y. Lee, P.-S. Chen, Y.-S. Chen, T.-Y. Wu, F. T. Chen, K.-L. Su, M.-J. Kao, K.-H. Cheng, M.-J. Tsai, 2009 Symp. VLSI circuits 82 (2009).

  25. 25.

    G. Servalli, In IEEE Int. Electron Devices Meet. (2009), p. 5.7.1–5.7.4.

  26. 26.

    X.P. Wang, Z. Fang, X. Li, B. Chen, B. Gao, J.F. Kang, Z.X. Chen, A. Kamath, N.S. Shen, N. Singh, G.Q. Lo, D.L. Kwong, In IEEE Int. Electron Devices Meet. (2012), p. 20.6.1–20.6.4

  27. 27.

    R. Mandapati, S. Shrivastava, In 72nd Device Res. Conf. (2014), pp. 241–242

  28. 28.

    M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J.B. Park, I.G. Baek, I.K. Yoo, In IEEE Int. Electron Devices Meet. (2007), pp. 771–774

  29. 29.

    J.J. Huang, C.W. Kuo, W.C. Chang, T.H. Hou, Appl. Phys. Lett. 96, 262901 (2010)

    Article  Google Scholar 

  30. 30.

    A. Chasin, L. Zhang, A. Bhoolokam, M. Nag, S. Steudel, B. Govoreanu, G. Gielen, P. Heremans, IEEE Electron Device Lett. 35, 642 (2014)

    Article  Google Scholar 

  31. 31.

    Y. Koo, K. Baek, H. Hwang, In 2016 Symp. VLSI Technol. (2016)

  32. 32.

    V.S.S. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. Kim, S. Srinivasan, S. Kuppurao, S. Lodha, U. Ganguly, IEEE Electron Device Lett. 33, 1396 (2012)

    Article  Google Scholar 

  33. 33.

    S. Kim, D. Il Moon, W. Lu, D.H. Kim, D.M. Kim, Y.K. Choi, S.J. Choi, Appl. Phys. Lett. 103, 33505 (2013)

    Article  Google Scholar 

  34. 34.

    L. Zhang, B. Govoreanu, A. Redolfi, D. Crotti, H. Hody, V. Paraschiv, S. Cosemans, C. Adelmann, T. Witters, S. Clima, Y.Y. Chen, P. Hendrickx, D.J. Wouters, G. Groeseneken, M. Jurczak, In IEEE Int. Electron Devices Meet. (2014), p. 6.8.1–6.8.4

  35. 35.

    J.J. Huang, Y.M. Tseng, C.W. Hsu, T.H. Hou, IEEE Electron Device Lett. 32, 1427 (2011)

    Article  Google Scholar 

  36. 36.

    B.J. Choi, J. Zhang, K. Norris, G. Gibson, K.M. Kim, W. Jackson, M.X.M. Zhang, Z. Li, J.J. Yang, R.S. Williams, Adv. Mater. 28, 356 (2016)

    Article  Google Scholar 

  37. 37.

    W. Lee, J. Park, J. Shin, J. Woo, S. Kim, G. Choi, S. Jung, S. Park, D. Lee, E. Cha, H.D. Lee, S.G. Kim, S. Chung, H. Hwang, In 2012 Symp. VLSI Technol. (2012), pp. 37–38

  38. 38.

    J. Woo, W. Lee, S. Park, S. Kim, D. Lee, G. Choi, E. Cha, J. Lee, W. Jung, C. Park, H. Hwang, In 2013 Symp. VLSI Technol. (2013), pp. T168–T169

  39. 39.

    Y.C. Bae, A.R. Lee, G.H. Baek, J.B. Chung, T.Y. Kim, J.G. Park, J.P. Hong, Sci. Rep. 5, 13362 (2015)

    Article  Google Scholar 

  40. 40.

    K. Gopalakrishnan, R.S. Shenoy, C.T. Rettner, K. Virwani, D.S. Bethune, R.M. Shelby, G.W. Burr, A. Kellock, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, B. Jackson, A.M. Friz, T. Topuria, P.M. Rice, B.N. Kurdi, In 2010 Symp. VLSI Technol. (2010), pp. 205–206

  41. 41.

    Q. Luo, X. Xu, H. Liu, H. Lv, T. Gong, S. Long, Q. Liu, H. Sun, W. Banerjee, L. Li, J. Gao, N. Lu, S.S. Chung, J. Li, M. Liu, In IEEE Int. Electron Devices Meet. (2015), p. 10.2.1–10.2.4

  42. 42.

    M.J. Lee, D. Lee, H. Kim, H.S. Choi, J.B. Park, H.G. Kim, Y.K. Cha, U.I. Chung, I.K. Yoo, K. Kim, In IEEE Int. Electron Devices Meet. (2012), p. 2.6.1–2.6.3

  43. 43.

    D. Ielmini, Y. Zhang, J. Appl. Phys. 102, 54517 (2007)

    Article  Google Scholar 

  44. 44.

    W. Czubatyj, S.J. Hudgens, Electron. Mater. Lett. 8, 157 (2012)

    Article  Google Scholar 

  45. 45.

    M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, IEEE Electron Device Lett. 32, 1579 (2011)

    Article  Google Scholar 

  46. 46.

    J.A.J. Rupp, R. Waser, D.J. Wouters, In 2016 I.E. 8th Int. Mem. Work. (2016)

  47. 47.

    S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, J. Shin, G. Choi, C. Cho, S. Park, D. Lee, E. J. Cha, B.H. Lee, H.D. Lee, S.G. Kim, S. Chung, H. Hwang, In 2012 Symp. VLSI Technol. (2012), pp. 155–156

  48. 48.

    E. Cha, J. Woo, D. Lee, S. Lee, J. Song, Y. Koo, J. Lee, C.G. Park, M.Y. Yang, K. Kamiya, K. Shiraishi, B. Magyari-Köpe, Y. Nishi, H. Hwang, In IEEE Int. Electron Devices Meet. (2013), p. 10.5.1–10.5.4

  49. 49.

    S.H. Jo, T. Kumar, S. Narayanan, W.D. Lu, H. Nazarian, S. Clara, In IEEE Int. Electron Devices Meet. (2014), p. 6.7.1–6.7.4

  50. 50.

    S. Lee, S. Lee, K. Moon, J. Park, B. Kim, H. Hwang, In 2015 I.E. 7th Int. Mem. Work. (2015)

  51. 51.

    I.G. Baek, M.S.M.J. Lee, S. Seo, M.S.M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U.U.-I. Chung, J.T. Moon, In IEEE Int. Electron Devices Meet. (2004), pp. 587–590

  52. 52.

    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  53. 53.

    D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Article  Google Scholar 

  54. 54.

    M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, Nat. Mater. 10, 625 (2011)

    Article  Google Scholar 

  55. 55.

    L. Goux, A. Fantini, A. Redolfi, C.Y. Chen, F.F. Shi, R. Degraeve, Y.Y. Chen, T. Witters, G. Groeseneken, M. Jurczak, In 2014 Symp. VLSI Technol. (2014)

  56. 56.

    A. Fantini, L. Goux, A. Redolfi, R. Degraeve, G. Kar, Y.Y. Chen, M. Jurczak, In 2014 Symp. VLSI Technol. (2014)

  57. 57.

    Y.Y. Chen, S. Member, L. Goux, S. Clima, B. Govoreanu, S. Member, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, IEEE Electron Device Lett. 60, 1114 (2013)

    Article  Google Scholar 

  58. 58.

    B. Hudec, I.-T. Wang, W.-L. Lai, C.-C. Chang, P. Jančovič, K. Fröhlich, M. Mičušík, M. Omastová, T.-H. Hou, J. Phys. D. Appl. Phys. 49, 215102 (2016)

    Article  Google Scholar 

  59. 59.

    W. Kim, S. II Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H.-S.P. Wong, S.S. Wong, In 2011 Symp. VLSI Technol. (2011), pp. 22–23

  60. 60.

    S. Yu, Y. Wu, Y. Chai, J. Provine, H.-S.P. Wong, In 2011 Int. Symp. VLSI Technol. Syst. Appl. (2011)

  61. 61.

    C.Y. Chen, L. Goux, A. Fantini, R. Degraeve, A. Redolfi, G. Groeseneken, M. Jurczak, Solid. State. Electron. 125, 198 (2016)

    Article  Google Scholar 

  62. 62.

    C. Lenser, A. Koehl, I. Slipukhina, H. Du, M. Patt, V. Feyer, C.M. Schneider, M. Lezaic, R. Waser, R. Dittmann, Adv. Funct. Mater. 25, 6360 (2015)

    Article  Google Scholar 

  63. 63.

    A. Belmonte, W. Kim, B.T. Chan, N. Heylen, A. Fantini, M. Houssa, M. Jurczak, L. Goux, IEEE Trans. Electron Devices 60, 3690 (2013)

    Article  Google Scholar 

  64. 64.

    S. Rahaman, S. Maikap, T.-C. Tien, H.-Y. Lee, W.-S. Chen, F.T. Chen, M.-J. Kao, M.-J. Tsai, Nanoscale Res. Lett. 7 (2012)

  65. 65.

    K. Kamiya, M. Y. Yang, B. Magyari-Kope, M. Niwa, Y. Nishi, K. Shiraishi, In IEEE Int. Electron Devices Meet. (2012), p. 20.2.1–20.2.4

  66. 66.

    L. Goux, In 2015 I.E. 15th Int. Conf. Nanotechnol. (2016), pp. 17–19

  67. 67.

    L. Goux, A. Fantini, R. Degraeve, N. Raghavan, R. Nigon, S. Strangio, G. Kar, D.J. Wouters, Y.Y. Chen, M. Komura, F. De Stefano, V.V Afanas, M. Jurczak, In 2013 Symp. VLSI Technol. (2013), pp. T162–T163

  68. 68.

    J.J. Yang, J.P. Strachan, Q. Xia, D.A.A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, S.S. Williams, Adv. Mater. 22, 4034 (2010)

    Article  Google Scholar 

  69. 69.

    F. Messerschmitt, M. Kubicek, J.L.M. Rupp, Adv. Funct. Mater. 25, 5117 (2015)

    Article  Google Scholar 

  70. 70.

    R. Yang, K. Terabe, T. Tsuruoka, T. Hasegawa, M. Aono, Appl. Phys. Lett. 100, 231603 (2012)

    Article  Google Scholar 

  71. 71.

    B. Magyari-Köpe, L. Zhao, K. Kamiya, M.Y. Yang, M. Niwa, K. Shiraishi, Y. Nishi, ECS Trans. 64, 153 (2014)

    Article  Google Scholar 

  72. 72.

    L. Zhao, S. Ryu, A. Hazeghi, In 2013 Symp. VLSI Technol. (2013), pp. T106–T107

  73. 73.

    B. Chakrabarti, R.V. Galatage, E.M. Vogel, IEEE Electron Device Lett. 34, 867 (2013)

    Article  Google Scholar 

  74. 74.

    Y.Y. Chen, R. Roelofs, A. Redolfi, R. Degraeve, D. Crotti, A. Fantini, S. Clima, B. Govoreanu, M. Komura, L. Goux, L. Zhang, A. Belmonte, Q. Xie, J. Maes, G. Pourtois, M. Jurczak, In 2014 Symp. VLSI Technol. (2014)

  75. 75.

    L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, Appl. Phys. Lett. 102, 83506 (2013)

    Article  Google Scholar 

  76. 76.

    L. Zhao, S. Clima, B. Magyari-Köpe, M. Jurczak, Y. Nishi, Appl. Phys. Lett. 107, 13504 (2015)

    Article  Google Scholar 

  77. 77.

    J. Guy, G. Molas, E. Vianello, F. Longnos, S. Blanc, C. Carabasse, M. Bernard, J.F. Nodin, A. Toffoli, J. Cluzel, P. Blaise, P. Dorion, O. Cueto, H. Grampeix, E. Souchier, T. Cabout, P. Brianceau, V. Balan, A. Roule, S. Maitrejean, L. Perniola, and B. De Salvo, In IEEE Int. Electron Devices Meet. (2013), p. 30.2.1–30.2.4

  78. 78.

    X. Xu, H. Lv, H. Liu, Q. Luo, T. Gong, M. Wang, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long, M. Liu, Nanoscale Res. Lett. 10 (2015)

  79. 79.

    J. Woo, A. Belmonte, A. Redolfi, H. Hwang, M. Jurczak, L. Goux, IEEE Electron Device Lett. 37, 173 (2016)

    Article  Google Scholar 

  80. 80.

    L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, G. Pourtois, G.M. Rignanese, C. Detavernier, S. Clima, Y.Y. Chen, A. Fantini, B. Govoreanu, D.J. Wouters, M. Jurczak, L. Altimime, J.A. Kittl, In 2012 Symp. VLSI Technol. (2012), pp. 69–70

  81. 81.

    A. Belmonte, A. Fantini, R. Degraeve, U. Celano, W. Vandervorst, A. Redolfi, M. Houssa, M. Jurczak, L. Goux, In 2015 I.E. 8th Int. Mem. Work. (2015)

  82. 82.

    T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 21, 425205 (2010)

    Article  Google Scholar 

  83. 83.

    K.-L. Lin, T.-H. Hou, Y.-J. Lee, J.-W. Chang, J.-H. Lin, J. Shieh, C.-T. Chou, T.-F. Lei, W.-H. Chang, W.-Y. Jang, C.-H. Lin, Jpn. J. Appl. Phys. 52, 31801 (2013)

    Article  Google Scholar 

  84. 84.

    Z. Wang, H. Jiang, M.H. Jang, P. Lin, A. Ribbe, Q. Xia, J.J. Yang, Nano 8, 14023 (2016)

    Google Scholar 

  85. 85.

    Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Nat. Commun. 5, 4232 (2014)

    Google Scholar 

  86. 86.

    C. Yang, D. Shang, Y. Chai, L. Yan, B. Shen, Y. Sun, Phys. Chem. Chem. Phys. 18, 12466 (2016)

    Article  Google Scholar 

  87. 87.

    K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, T. Sone, K. Endo, A. Kouchiyama, S. Sasaki, A. Maesaka, N. Yamada, H. Narisawa, In IEEE Int. Electron Devices Meet. (2007), pp. 783–786

  88. 88.

    L. Goux, K. Opsomer, R. Degraeve, R. Mller, C. Detavernier, D.J. Wouters, M. Jurczak, L. Altimime, J.A. Kittl, Appl. Phys. Lett. 99, 53502 (2011)

    Article  Google Scholar 

  89. 89.

    W. Devulder, K. Opsomer, F. Seidel, A. Belmonte, R. Muller, B. De Schutter, H. Bender, W. Vandervorst, S. Van Elshocht, M. Jurczak, L. Goux, C. Detavernier, ACS Appl. Mater. Interfaces 5, 6984 (2013)

    Article  Google Scholar 

  90. 90.

    W. Devulder, K. Opsomer, G. Rampelberg, B. De Schutter, K. Devloo-Casier, M. Jurczak, L. Goux, C. Detavernier, J. Mater. Chem. C 3, 12469 (2015)

    Article  Google Scholar 

  91. 91.

    L. Goux, A. Belmonte, U. Celano, J. Woo, S. Folkersma, C.Y. Chen, A. Redolfi, A. Fantini, R. Degraeve, S. Clima, W. Vandervorst, M. Jurczak, In 2016 Symp. VLSI Technol. (2016)

  92. 92.

    C.-W. Hsu, Y.-F. Wang, C.-C. Wan, I.-T. Wang, C.-T. Chou, W.-L. Lai, Y.-J. Lee, T.-H. Hou, Nanotechnology 25, 165202 (2014)

    Article  Google Scholar 

  93. 93.

    J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, Y.J. Kwon, X. Shao, C.S. Hwang, Adv. Mater. 27, 3811 (2015)

    Article  Google Scholar 

  94. 94.

    B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y.Y. Chen, S. Clima, V. Paraschiv, H. Hody, C. Adelmann, M. Popovici, O. Richard, M. Jurczak, In 2015 Symp. VLSI Technol. (2015), pp. T132–T133

  95. 95.

    A.H. Edwards, H.J. Barnaby, K.A. Campbell, M.N. Kozicki, W. Liu, M.J. Marinella, Proc. IEEE 103, 1004 (2015)

    Article  Google Scholar 

  96. 96.

    S. Yu, P.Y. Chen, IEEE Solid-State Circuits Mag. 8, 43 (2016)

    Article  Google Scholar 

  97. 97.

    D.J. Wouters, R. Waser, M. Wuttig, Proc. IEEE 103, 1274 (2015)

    Article  Google Scholar 

  98. 98.

    S. Menzel, U. B??ttger, M. Wimmer, and M. Salinga, Adv. Funct. Mater. 25, 6306 (2015).

  99. 99.

    Y. Deng, H. Chen, B. Gao, S. Yu, S. Wu, L. Zhao, B. Chen, Z. Jiang, X. Liu, T. Hou, Y. Nishi, J. Kang, and H.-S. P. Wong, In IEEE Int. Electron Devices Meet. (2013), p. 25.7.1–25.7.4.

  100. 100.

    I.G. Baek, C.J. Park, H. Ju, D.J. Seong, H.S. Ahn, J.H. Kim, M.K. Yang, S.H. Song, E.M. Kim, S.O. Park, C.H. Park, C.W. Song, G.T. Jeong, S. Choi, H.K. Kang, C. Chung, In IEEE Int. Electron Devices Meet. (2011), p. 31.8.1–31.8.4

  101. 101.

    H. Chen, S. Yu, B. Gao, P. Huang, J. Kang, H.P. Wong, In IEEE Int. Electron Devices Meet. (2012), p. 20.7.1–20.1.4

  102. 102.

    S. Yu, H. Chen, Y. Deng, B. Gao, Z. Jiang, J. Kang, H.-S.P. Wong, In 2013 Symp. VLSI Technol. (2013), pp. T158–T159

  103. 103.

    L. Zhang, S. Cosemans, D.J. Wouters, B. Govoreanu, G. Groeseneken, M. Jurczak, In 2013 I.E. 5th Int. Mem. Work. (2013), pp. 155–158

  104. 104.

    X. Xu, Q. Luo, T. Gong, H. Lv, S. Long, Q. Liu, S.S. Chung, J. Li, M. Liu, In 2016 Symp. VLSI Technol. (2016)

  105. 105.

    S. Spiga, T. Yanagida, and T. Kawai, Bottom‐up approaches for resistive switching memories, In in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 661–694. https://doi.org/10.1002/9783527680870.ch23

  106. 106.

    Y. Lai, P. Xin, S. Cheng, J. Yu, Q. Zheng, Appl. Phys. Lett. 106, 31603 (2015)

    Article  Google Scholar 

  107. 107.

    K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, J.S. Kim, B.H. Park, T. Kawai, Nano Lett. 11, 2114 (2011)

    Article  Google Scholar 

  108. 108.

    Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie, F. Pan, Nano 3, 1917 (2011)

    Google Scholar 

  109. 109.

    C.-W. Huang, J.-Y. Chen, C.-H. Chiu, W.-W. Wu, Nano Lett. 14, 2759 (2014)

    Article  Google Scholar 

  110. 110.

    K. Oka, T. Yanagida, K. Nagashima, H. Tanaka, T. Kawai, J. Am. Chem. Soc. 131, 3434 (2009)

    Article  Google Scholar 

  111. 111.

    L. He, Z.-M. Liao, H.-C. Wu, X.-X. Tian, D.-S. Xu, G.L.W. Cross, G.S. Duesberg, I.V. Shvets, D.-P. Yu, Nano Lett. 11, 4601 (2011)

    Article  Google Scholar 

  112. 112.

    C. Cagli, F. Nardi, B. Harteneck, Z. Tan, Y. Zhang, D. Ielmini, Small 7, 2899 (2011)

    Article  Google Scholar 

  113. 113.

    E.D. Herderick, K.M. Reddy, R.N. Sample, T.I. Draskovic, N.P. Padture, Appl. Phys. Lett. 95, 203505 (2009)

    Article  Google Scholar 

  114. 114.

    D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano Lett. 3, 1255 (2003)

    Article  Google Scholar 

  115. 115.

    B. Fuhrmann, H.S. Leipner, H.-R. Höche, L. Schubert, P. Werner, U. Gösele, Nano Lett. 5, 2524 (2005)

    Article  Google Scholar 

  116. 116.

    H. Robatjazi, S.M. Bahauddin, L.H. Macfarlan, S. Fu, I. Thomann, Chem. Mater. 28, 4546 (2016)

    Article  Google Scholar 

  117. 117.

    O. Nishinaga, T. Kikuchi, S. Natsui, R.O. Suzuki, Sci. Rep. 3, 2748 (2013)

    Article  Google Scholar 

  118. 118.

    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)

    Article  Google Scholar 

  119. 119.

    I. Karageorgos, J. Ryckaert, M.C. Tung, H.-S.P. Wong, R. Gronheid, J. Bekaert, E. Karageorgos, K. Croes, G. Vandenberghe, M. Stucchi, W. Dehaene, SPIE Proc. 9781, 97810N (2016)

    Article  Google Scholar 

  120. 120.

    C.M. Bates, M.J. Maher, D.W. Janes, C.J. Ellison, C.G. Willson, Macromolecules 47, 2 (2014)

    Article  Google Scholar 

  121. 121.

    D. Perego, S. Franz, M. Bestetti, L. Cattaneo, S. Brivio, G. Tallarida, S. Spiga, Nanotechnology 24, 45302 (2013)

    Article  Google Scholar 

  122. 122.

    F. Ferrarese Lupi, T.J. Giammaria, F.G. Volpe, F. Lotto, G. Seguini, B. Pivac, M. Laus, M. Perego, ACS Appl. Mater. Interfaces 6, 21389 (2014)

    Article  Google Scholar 

  123. 123.

    Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS) (2015)

  124. 124.

    E. Choudhary, V. Szalai, RSC Adv. 6, 67992 (2016)

    Article  Google Scholar 

  125. 125.

    R. Gronheid, P. Rincon Delgadillo, H. Pathangi, D. Van den Heuvel, D. Parnell, B.T. Chan, Y.-T. Lee, L. Van Look, Y. Cao, Y. Her, G. Lin, R. Harukawa, V. Nagaswami, L. D’Urzo, M. Somervell, P. Nealey, SPIE Proc. 9049, 904905 (2014)

    Article  Google Scholar 

  126. 126.

    C. Bencher, H. Yi, J. Zhou, M. Cai, J. Smith, L. Miao, O. Montal, S. Blitshtein, A. Lavi, K. Dotan, H. Dai, J.Y. Cheng, D.P. Sanders, M. Tjio, S. Holmes, SPIE Proc. 8323, 83230N (2012)

    Article  Google Scholar 

  127. 127.

    S. Brivio, G. Tallarida, D. Perego, S. Franz, D. Deleruyelle, C. Muller, S. Spiga, Appl. Phys. Lett. 101, 223510 (2012)

    Article  Google Scholar 

  128. 128.

    S. Brivio, D. Perego, G. Tallarida, M. Bestetti, S. Franz, S. Spiga, Appl. Phys. Lett. 103, 153503 (2013)

    Article  Google Scholar 

  129. 129.

    J. Song, J. Lee, Sci. Rep. 6, 18967 (2016)

    Article  Google Scholar 

  130. 130.

    L. Ji, Y.-F. Chang, B. Fowler, Y.-C. Chen, T.-M. Tsai, K.-C. Chang, M.-C. Chen, T.-C. Chang, S.M. Sze, E.T. Yu, J.C. Lee, Nano Lett. 14, 813 (2014)

    Article  Google Scholar 

  131. 131.

    J. Frascaroli, S. Brivio, F. Ferrarese Lupi, G. Seguini, L. Boarino, M. Perego, S. Spiga, ACS Nano 9, 2518 (2015)

    Article  Google Scholar 

  132. 132.

    H. Masuda and K. Fukuda, Science (80-. ). 268, 1466 (1995).

  133. 133.

    O. Jessensky, F. Müller, U. Gösele, Appl. Phys. Lett. 72, 1173 (1998)

    Article  Google Scholar 

  134. 134.

    H. Robatjazi, S.M. Bahauddin, L.H. Macfarlan, S. Fu, I. Thomann, Chem. Mater. 28, 4546 (2016)

    Article  Google Scholar 

  135. 135.

    J. Hong, K. Kim, N. Kwon, J. Lee, D. Whang, I. Chung, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 28(735) (2010)

  136. 136.

    A. Al-Haddad, C. Wang, H. Qi, F. Grote, L. Wen, J. Bernhard, R. Vellacheri, S. Tarish, G. Nabi, U. Kaiser, Y. Lei, ACS Appl. Mater. Interfaces 8, 23348 (2016)

    Article  Google Scholar 

  137. 137.

    S.I. Kim, J.H. Lee, Y.W. Chang, S.S. Hwang, K.-H. Yoo, Appl. Phys. Lett. 93, 33503 (2008)

    Article  Google Scholar 

  138. 138.

    Y.-C. Huang, P.-Y. Chen, K.-F. Huang, T.-C. Chuang, H.-H. Lin, T.-S. Chin, R.-S. Liu, Y.-W. Lan, C.-D. Chen, C.-H. Lai, NPG Asia Mater. 6, e85 (2014)

    Article  Google Scholar 

  139. 139.

    S. Brivio, G. Tallarida, E. Cianci, S. Spiga, Nanotechnology 25, 385705 (2014)

    Article  Google Scholar 

  140. 140.

    S.-H. Lyu, J.-S. Lee, J. Mater. Chem. 22, 1852 (2012)

    Article  Google Scholar 

  141. 141.

    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)

    Article  Google Scholar 

  142. 142.

    H.-C. Kim, S.-M. Park, W.D. Hinsberg, Chem. Rev. 110, 146 (2010)

    Article  Google Scholar 

  143. 143.

    M.A. Morris, Microelectron. Eng. 132, 207 (2015)

    Article  Google Scholar 

  144. 144.

    F. Ferrarese Lupi, G. Aprile, T.J. Giammaria, G. Seguini, G. Zuccheri, N. De Leo, L. Boarino, M. Laus, M. Perego, ACS Appl. Mater. Interfaces 7, 23615 (2015)

    Article  Google Scholar 

  145. 145.

    J. Frascaroli, G. Seguini, S. Spiga, M. Perego, L. Boarino, Nanotechnology 26, 215301 (2015)

    Article  Google Scholar 

  146. 146.

    C.A. Ross, K.K. Berggren, J.Y. Cheng, Y.S. Jung, J.B. Chang, Adv. Mater. 26, 4386 (2014)

    Article  Google Scholar 

  147. 147.

    H. Yi, X.Y. Bao, R. Tiberio, H.-S.P. Wong, Nano Lett. 15, 805 (2015)

    Article  Google Scholar 

  148. 148.

    J. Frascaroli, S. Brivio, F. Ferrarese Lupi, G. Seguini, L. Boarino, M. Perego, S. Spiga, ACS Nano 9, 2518 (2015)

    Article  Google Scholar 

  149. 149.

    A. Nunns, J. Gwyther, I. Manners, Polymer (Guildf) 54, 1269 (2013)

    Article  Google Scholar 

  150. 150.

    C. Cummins, T. Ghoshal, J.D. Holmes, M.A. Morris, Adv. Mater. 28, 5586 (2016)

    Article  Google Scholar 

  151. 151.

    J. Frascaroli, E. Cianci, S. Spiga, G. Seguini, M. Perego, ACS Appl. Mater. Interfaces 8, 33933 (2016)

    Article  Google Scholar 

  152. 152.

    W.I. Park, J.M. Yoon, M. Park, J. Lee, S.K. Kim, J.W. Jeong, K. Kim, H.Y. Jeong, S. Jeon, K.S. No, J.Y. Lee, Y.S. Jung, Nano Lett. 12, 1235 (2012)

    Article  Google Scholar 

  153. 153.

    B.K. You, W.I. Park, J.M. Kim, K. Il Park, H.K. Seo, J.Y. Lee, Y.S. Jung, K.J. Lee, ACS Nano 8, 9492 (2014)

    Article  Google Scholar 

  154. 154.

    Y. Wu, H. Yi, Z. Zhang, Z. Jiang, J. Sohn, S. Wong, H.-S.P. Wong, In IEEE Int. Electron Devices Meet. (2013), p. 20.8.1–20.8.4

Download references

Acknowledgments

H.-Y. Chen would like to thank Yiming Zhu and Dr. Kanyu Cao’s support for the emerging memory program in the GigaDevice Semiconductor Inc. J. Sohn and H.-S. P. Wong are supported in part by the member companies of the Non-Volatile Memory Technology Research Initiative (NMTRI) industrial affiliate program at Stanford. B. Hudec, V. M. Teja, C.-C. Chang and T.-H. Hou are supported by the Ministry of Science and Technology of Taiwan under grant: 105-2119-M-009-009/104-2911-I-009-529/106-2633-E-009-001. H. B. Lv and M. Liu are supported by the MOST of China under Grant No 2016YFA0203800 and National Natural Science Foundation of China under grants No. 61522408, 61334007. J. Frascaroli, S. Brivio and S. Spiga would like to acknowledge the partial support from the European Project NeuRAM3 (grant agreement n. 687299).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong-Yu Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Brivio, S., Chang, C. et al. Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication. J Electroceram 39, 21–38 (2017). https://doi.org/10.1007/s10832-017-0095-9

Download citation

Keywords

  • Resistive random access memory (RRAM)
  • Resistive switching device
  • 3D integration
  • Selector
  • Bottom-up fabrication