Advertisement

Journal of Electroceramics

, Volume 39, Issue 1–4, pp 21–38 | Cite as

Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication

  • Hong-Yu ChenEmail author
  • Stefano Brivio
  • Che-Chia Chang
  • Jacopo Frascaroli
  • Tuo-Hung Hou
  • Boris Hudec
  • Ming Liu
  • Hangbing Lv
  • Gabriel Molas
  • Joon Sohn
  • Sabina Spiga
  • V. Mani Teja
  • Elisa Vianello
  • H.-S. Philip Wong
Article

Abstract

Emerging non-volatile memory technologies are promising due to their anticipated capacity benefits, non-volatility, and zero idle energy. One of the most promising candidates is resistive random access memory (RRAM) based on resistive switching (RS). This paper reviews the development of RS device technology including the fundamental physics, material engineering, three-dimension (3D) integration, and bottom-up fabrication. The device operation, physical mechanisms for resistive switching, reliability metrics, and memory cell selector candidates are summarized from the recent advancement in both industry and academia. Options for 3D memory array architectures are presented for the mass storage application. Finally, the potential application of bottom-up fabrication approaches for effective manufacturing is introduced.

Keywords

Resistive random access memory (RRAM) Resistive switching device 3D integration Selector Bottom-up fabrication 

Notes

Acknowledgments

H.-Y. Chen would like to thank Yiming Zhu and Dr. Kanyu Cao’s support for the emerging memory program in the GigaDevice Semiconductor Inc. J. Sohn and H.-S. P. Wong are supported in part by the member companies of the Non-Volatile Memory Technology Research Initiative (NMTRI) industrial affiliate program at Stanford. B. Hudec, V. M. Teja, C.-C. Chang and T.-H. Hou are supported by the Ministry of Science and Technology of Taiwan under grant: 105-2119-M-009-009/104-2911-I-009-529/106-2633-E-009-001. H. B. Lv and M. Liu are supported by the MOST of China under Grant No 2016YFA0203800 and National Natural Science Foundation of China under grants No. 61522408, 61334007. J. Frascaroli, S. Brivio and S. Spiga would like to acknowledge the partial support from the European Project NeuRAM3 (grant agreement n. 687299).

References

  1. 1.
    R. Waser, R. Dittmann, C. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  2. 2.
    H.-S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu, P.S. Chen, B. Lee, F.T. Chen, M.J. Tsai, Proc. IEEE 100, 1951 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Ho, H.H. Huang, M.T. Lee, C.L. Hsu, T.Y. Lai, W.C. Chiu, M. Lee, T.H. Chou, I. Yang, M.C. Chen, C.S. Wu, K.H. Chiang, Y. Der Yao, C. Hu, F.L. Yang, In IEEE Int. Electron Devices Meet. (2012), p. 2.8.1–2.8.4Google Scholar
  4. 4.
    T.Y. Liu, T.H. Yan, R. Scheuerlein, Y. Chen, J.K. Lee, G. Balakrishnan, G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, A. Al-Shamma, C. Chen, M. Gupta, G. Hilton, A. Kathuria, V. Lai, M. Matsumoto, A. Nigam, A. Pai, J. Pakhale, C.H. Siau, X. Wu, Y. Yin, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, H. Inoue, L. Fasoli, In 2013 I.E. Int. Solid-State Circuits Conf. (2013), pp. 210–211Google Scholar
  5. 5.
    W. Otsuka, K. Miyata, M. Kitagawa, K. Tsutsui, T. Tsushima, H. Yoshihara, T. Namise, Y. Terao, K. Ogata, In 2011 I.E. Int. Solid-State Circuits Conf. (2011), pp. 210–211Google Scholar
  6. 6.
    R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, G. Hush, In 2014 I.E. Int. Solid-State Circuits Conf. (2014), pp. 338–339Google Scholar
  7. 7.
    G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, A. Toffoli, M. Bernard, A. Roule, F. Pierre, C. Licitra, B. De Salvo, L. Perniola, In IEEE Int. Electron Devices Meet. (2014), p. 6.1.1–6.1.4.Google Scholar
  8. 8.
    E. Vianello, O. Thomas, G. Molas, O. Turkyilmaz, N. Jovanović, D. Garbin, G. Palma, M. Alayan, C. Nguyen, J. Coignus, B. Giraud, T. Benoist, M. Reyboz, A. Toffoli, C. Charpin, F. Clermidy, and L. Perniola, In IEEE Int. Electron Devices Meet. (2014), p. 6.3.1–6.3.4.Google Scholar
  9. 9.
    C. Nail, G. Molas, P. Blaise, G. Piccolboni, B. Sklenard, C. Cagli, M. Bernard, A. Roule, M. Azzaz, E. Vianello, In IEEE Int. Electron Devices Meet. (2016), p. 4.5.1–4.5.4Google Scholar
  10. 10.
    A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. El Hajjam, R. Crochemore, J.F. Nodin, P. Olivo, and L. Perniola, In IEEE Int. Electron Devices Meet. (2016), p. 4.7.1–4.7.4Google Scholar
  11. 11.
    D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat, G. Ghibaudo, B. DeSalvo, L. Perniola, IEEE Trans. Electron Devices 62, 2494 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Benoist, S. Blonkowski, S. Jeannot, S. Denorme, J. Damiens, J. Berger, P. Candelier, E. Vianello, H. Grampeix, J.F. Nodin, E. Jalaguier, L. Perniola, and B. Allard, In IEEE Int. Reliab. Phys. Symp. (2014), p. 2E.6.1-2E.6.5Google Scholar
  13. 13.
    T. Cabout, L. Perniola, V. Jousseaume, H. Grampeix, J.F. Nodin, A. Toffoli, M. Guillermet, E. Jalaguier, E. Vianello, G. Molas, G. Reimbold, B. De Salvo, T. Diokh, P. Candelier, O. Pirrotta, A. Padovani, L. Larcher, M. Bocquet, C. Muller, In 2013 5th IEEE Int. Mem. Work. (2013), pp. 116–119Google Scholar
  14. 14.
    B. Traoré, P. Blaise, E. Vianello, H. Grampeix, A. Bonnevialle, E. Jalaguier, G. Molas, S. Jeannot, L. Perniola, B. DeSalvo, Y. Nishi, In IEEE Int. Electron Devices Meet. (2015), p. 21.5.1–21.5.4Google Scholar
  15. 15.
    B. Traoré, P. Blaise, E. Vianello, L. Perniola, B. De Salvo, Y. Nishi, IEEE Trans. Electron Devices 63, 360 (2016)CrossRefGoogle Scholar
  16. 16.
    G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, J. Vac, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 32, 40802 (2014)Google Scholar
  17. 17.
    B. Hudec, C.W. Hsu, I.T. Wang, W.L. Lai, C.C. Chang, T. Wang, K. Fröhlich, C.H. Ho, C.H. Lin, T.H. Hou, Sci. China Inf. Sci. 59, 61403 (2016)Google Scholar
  18. 18.
    C.L. Lo, T.H. Hou, M.C. Chen, J.J. Huang, IEEE Trans. Electron Devices 60, 420 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Chen, IEEE Trans. Electron Devices 62, 2845 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Chen, IEEE Trans. Electron Devices 60, 1318 (2013)CrossRefGoogle Scholar
  21. 21.
    B. Govoreanu, L. Zhang, M. Jurczak, In 2015 I.E. Int. Conf. IC Des. Technol. (2015), pp. 1–4Google Scholar
  22. 22.
    J.J. Huang, Y.M. Tseng, W.C. Luo, C.W. Hsu, T.H. Hou, In IEEE Int. Electron Devices Meet. (2011), p. 31.7.1–31.7.4Google Scholar
  23. 23.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS) (2013)Google Scholar
  24. 24.
    S.-S. Sheu, P.-C. Chiang, W.-P. Lin, H.-Y. Lee, P.-S. Chen, Y.-S. Chen, T.-Y. Wu, F. T. Chen, K.-L. Su, M.-J. Kao, K.-H. Cheng, M.-J. Tsai, 2009 Symp. VLSI circuits 82 (2009).Google Scholar
  25. 25.
    G. Servalli, In IEEE Int. Electron Devices Meet. (2009), p. 5.7.1–5.7.4.Google Scholar
  26. 26.
    X.P. Wang, Z. Fang, X. Li, B. Chen, B. Gao, J.F. Kang, Z.X. Chen, A. Kamath, N.S. Shen, N. Singh, G.Q. Lo, D.L. Kwong, In IEEE Int. Electron Devices Meet. (2012), p. 20.6.1–20.6.4Google Scholar
  27. 27.
    R. Mandapati, S. Shrivastava, In 72nd Device Res. Conf. (2014), pp. 241–242Google Scholar
  28. 28.
    M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J.B. Park, I.G. Baek, I.K. Yoo, In IEEE Int. Electron Devices Meet. (2007), pp. 771–774Google Scholar
  29. 29.
    J.J. Huang, C.W. Kuo, W.C. Chang, T.H. Hou, Appl. Phys. Lett. 96, 262901 (2010)CrossRefGoogle Scholar
  30. 30.
    A. Chasin, L. Zhang, A. Bhoolokam, M. Nag, S. Steudel, B. Govoreanu, G. Gielen, P. Heremans, IEEE Electron Device Lett. 35, 642 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Koo, K. Baek, H. Hwang, In 2016 Symp. VLSI Technol. (2016)Google Scholar
  32. 32.
    V.S.S. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. Kim, S. Srinivasan, S. Kuppurao, S. Lodha, U. Ganguly, IEEE Electron Device Lett. 33, 1396 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Kim, D. Il Moon, W. Lu, D.H. Kim, D.M. Kim, Y.K. Choi, S.J. Choi, Appl. Phys. Lett. 103, 33505 (2013)CrossRefGoogle Scholar
  34. 34.
    L. Zhang, B. Govoreanu, A. Redolfi, D. Crotti, H. Hody, V. Paraschiv, S. Cosemans, C. Adelmann, T. Witters, S. Clima, Y.Y. Chen, P. Hendrickx, D.J. Wouters, G. Groeseneken, M. Jurczak, In IEEE Int. Electron Devices Meet. (2014), p. 6.8.1–6.8.4Google Scholar
  35. 35.
    J.J. Huang, Y.M. Tseng, C.W. Hsu, T.H. Hou, IEEE Electron Device Lett. 32, 1427 (2011)CrossRefGoogle Scholar
  36. 36.
    B.J. Choi, J. Zhang, K. Norris, G. Gibson, K.M. Kim, W. Jackson, M.X.M. Zhang, Z. Li, J.J. Yang, R.S. Williams, Adv. Mater. 28, 356 (2016)CrossRefGoogle Scholar
  37. 37.
    W. Lee, J. Park, J. Shin, J. Woo, S. Kim, G. Choi, S. Jung, S. Park, D. Lee, E. Cha, H.D. Lee, S.G. Kim, S. Chung, H. Hwang, In 2012 Symp. VLSI Technol. (2012), pp. 37–38Google Scholar
  38. 38.
    J. Woo, W. Lee, S. Park, S. Kim, D. Lee, G. Choi, E. Cha, J. Lee, W. Jung, C. Park, H. Hwang, In 2013 Symp. VLSI Technol. (2013), pp. T168–T169Google Scholar
  39. 39.
    Y.C. Bae, A.R. Lee, G.H. Baek, J.B. Chung, T.Y. Kim, J.G. Park, J.P. Hong, Sci. Rep. 5, 13362 (2015)CrossRefGoogle Scholar
  40. 40.
    K. Gopalakrishnan, R.S. Shenoy, C.T. Rettner, K. Virwani, D.S. Bethune, R.M. Shelby, G.W. Burr, A. Kellock, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, B. Jackson, A.M. Friz, T. Topuria, P.M. Rice, B.N. Kurdi, In 2010 Symp. VLSI Technol. (2010), pp. 205–206Google Scholar
  41. 41.
    Q. Luo, X. Xu, H. Liu, H. Lv, T. Gong, S. Long, Q. Liu, H. Sun, W. Banerjee, L. Li, J. Gao, N. Lu, S.S. Chung, J. Li, M. Liu, In IEEE Int. Electron Devices Meet. (2015), p. 10.2.1–10.2.4Google Scholar
  42. 42.
    M.J. Lee, D. Lee, H. Kim, H.S. Choi, J.B. Park, H.G. Kim, Y.K. Cha, U.I. Chung, I.K. Yoo, K. Kim, In IEEE Int. Electron Devices Meet. (2012), p. 2.6.1–2.6.3Google Scholar
  43. 43.
    D. Ielmini, Y. Zhang, J. Appl. Phys. 102, 54517 (2007)CrossRefGoogle Scholar
  44. 44.
    W. Czubatyj, S.J. Hudgens, Electron. Mater. Lett. 8, 157 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, IEEE Electron Device Lett. 32, 1579 (2011)CrossRefGoogle Scholar
  46. 46.
    J.A.J. Rupp, R. Waser, D.J. Wouters, In 2016 I.E. 8th Int. Mem. Work. (2016)Google Scholar
  47. 47.
    S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, J. Shin, G. Choi, C. Cho, S. Park, D. Lee, E. J. Cha, B.H. Lee, H.D. Lee, S.G. Kim, S. Chung, H. Hwang, In 2012 Symp. VLSI Technol. (2012), pp. 155–156Google Scholar
  48. 48.
    E. Cha, J. Woo, D. Lee, S. Lee, J. Song, Y. Koo, J. Lee, C.G. Park, M.Y. Yang, K. Kamiya, K. Shiraishi, B. Magyari-Köpe, Y. Nishi, H. Hwang, In IEEE Int. Electron Devices Meet. (2013), p. 10.5.1–10.5.4Google Scholar
  49. 49.
    S.H. Jo, T. Kumar, S. Narayanan, W.D. Lu, H. Nazarian, S. Clara, In IEEE Int. Electron Devices Meet. (2014), p. 6.7.1–6.7.4Google Scholar
  50. 50.
    S. Lee, S. Lee, K. Moon, J. Park, B. Kim, H. Hwang, In 2015 I.E. 7th Int. Mem. Work. (2015)Google Scholar
  51. 51.
    I.G. Baek, M.S.M.J. Lee, S. Seo, M.S.M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U.U.-I. Chung, J.T. Moon, In IEEE Int. Electron Devices Meet. (2004), pp. 587–590Google Scholar
  52. 52.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)CrossRefGoogle Scholar
  53. 53.
    D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)CrossRefGoogle Scholar
  54. 54.
    M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, Nat. Mater. 10, 625 (2011)CrossRefGoogle Scholar
  55. 55.
    L. Goux, A. Fantini, A. Redolfi, C.Y. Chen, F.F. Shi, R. Degraeve, Y.Y. Chen, T. Witters, G. Groeseneken, M. Jurczak, In 2014 Symp. VLSI Technol. (2014)Google Scholar
  56. 56.
    A. Fantini, L. Goux, A. Redolfi, R. Degraeve, G. Kar, Y.Y. Chen, M. Jurczak, In 2014 Symp. VLSI Technol. (2014)Google Scholar
  57. 57.
    Y.Y. Chen, S. Member, L. Goux, S. Clima, B. Govoreanu, S. Member, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, IEEE Electron Device Lett. 60, 1114 (2013)CrossRefGoogle Scholar
  58. 58.
    B. Hudec, I.-T. Wang, W.-L. Lai, C.-C. Chang, P. Jančovič, K. Fröhlich, M. Mičušík, M. Omastová, T.-H. Hou, J. Phys. D. Appl. Phys. 49, 215102 (2016)CrossRefGoogle Scholar
  59. 59.
    W. Kim, S. II Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H.-S.P. Wong, S.S. Wong, In 2011 Symp. VLSI Technol. (2011), pp. 22–23Google Scholar
  60. 60.
    S. Yu, Y. Wu, Y. Chai, J. Provine, H.-S.P. Wong, In 2011 Int. Symp. VLSI Technol. Syst. Appl. (2011)Google Scholar
  61. 61.
    C.Y. Chen, L. Goux, A. Fantini, R. Degraeve, A. Redolfi, G. Groeseneken, M. Jurczak, Solid. State. Electron. 125, 198 (2016)CrossRefGoogle Scholar
  62. 62.
    C. Lenser, A. Koehl, I. Slipukhina, H. Du, M. Patt, V. Feyer, C.M. Schneider, M. Lezaic, R. Waser, R. Dittmann, Adv. Funct. Mater. 25, 6360 (2015)CrossRefGoogle Scholar
  63. 63.
    A. Belmonte, W. Kim, B.T. Chan, N. Heylen, A. Fantini, M. Houssa, M. Jurczak, L. Goux, IEEE Trans. Electron Devices 60, 3690 (2013)CrossRefGoogle Scholar
  64. 64.
    S. Rahaman, S. Maikap, T.-C. Tien, H.-Y. Lee, W.-S. Chen, F.T. Chen, M.-J. Kao, M.-J. Tsai, Nanoscale Res. Lett. 7 (2012)Google Scholar
  65. 65.
    K. Kamiya, M. Y. Yang, B. Magyari-Kope, M. Niwa, Y. Nishi, K. Shiraishi, In IEEE Int. Electron Devices Meet. (2012), p. 20.2.1–20.2.4Google Scholar
  66. 66.
    L. Goux, In 2015 I.E. 15th Int. Conf. Nanotechnol. (2016), pp. 17–19Google Scholar
  67. 67.
    L. Goux, A. Fantini, R. Degraeve, N. Raghavan, R. Nigon, S. Strangio, G. Kar, D.J. Wouters, Y.Y. Chen, M. Komura, F. De Stefano, V.V Afanas, M. Jurczak, In 2013 Symp. VLSI Technol. (2013), pp. T162–T163Google Scholar
  68. 68.
    J.J. Yang, J.P. Strachan, Q. Xia, D.A.A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, S.S. Williams, Adv. Mater. 22, 4034 (2010)CrossRefGoogle Scholar
  69. 69.
    F. Messerschmitt, M. Kubicek, J.L.M. Rupp, Adv. Funct. Mater. 25, 5117 (2015)CrossRefGoogle Scholar
  70. 70.
    R. Yang, K. Terabe, T. Tsuruoka, T. Hasegawa, M. Aono, Appl. Phys. Lett. 100, 231603 (2012)CrossRefGoogle Scholar
  71. 71.
    B. Magyari-Köpe, L. Zhao, K. Kamiya, M.Y. Yang, M. Niwa, K. Shiraishi, Y. Nishi, ECS Trans. 64, 153 (2014)CrossRefGoogle Scholar
  72. 72.
    L. Zhao, S. Ryu, A. Hazeghi, In 2013 Symp. VLSI Technol. (2013), pp. T106–T107Google Scholar
  73. 73.
    B. Chakrabarti, R.V. Galatage, E.M. Vogel, IEEE Electron Device Lett. 34, 867 (2013)CrossRefGoogle Scholar
  74. 74.
    Y.Y. Chen, R. Roelofs, A. Redolfi, R. Degraeve, D. Crotti, A. Fantini, S. Clima, B. Govoreanu, M. Komura, L. Goux, L. Zhang, A. Belmonte, Q. Xie, J. Maes, G. Pourtois, M. Jurczak, In 2014 Symp. VLSI Technol. (2014)Google Scholar
  75. 75.
    L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, Appl. Phys. Lett. 102, 83506 (2013)CrossRefGoogle Scholar
  76. 76.
    L. Zhao, S. Clima, B. Magyari-Köpe, M. Jurczak, Y. Nishi, Appl. Phys. Lett. 107, 13504 (2015)CrossRefGoogle Scholar
  77. 77.
    J. Guy, G. Molas, E. Vianello, F. Longnos, S. Blanc, C. Carabasse, M. Bernard, J.F. Nodin, A. Toffoli, J. Cluzel, P. Blaise, P. Dorion, O. Cueto, H. Grampeix, E. Souchier, T. Cabout, P. Brianceau, V. Balan, A. Roule, S. Maitrejean, L. Perniola, and B. De Salvo, In IEEE Int. Electron Devices Meet. (2013), p. 30.2.1–30.2.4Google Scholar
  78. 78.
    X. Xu, H. Lv, H. Liu, Q. Luo, T. Gong, M. Wang, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long, M. Liu, Nanoscale Res. Lett. 10 (2015)Google Scholar
  79. 79.
    J. Woo, A. Belmonte, A. Redolfi, H. Hwang, M. Jurczak, L. Goux, IEEE Electron Device Lett. 37, 173 (2016)CrossRefGoogle Scholar
  80. 80.
    L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, G. Pourtois, G.M. Rignanese, C. Detavernier, S. Clima, Y.Y. Chen, A. Fantini, B. Govoreanu, D.J. Wouters, M. Jurczak, L. Altimime, J.A. Kittl, In 2012 Symp. VLSI Technol. (2012), pp. 69–70Google Scholar
  81. 81.
    A. Belmonte, A. Fantini, R. Degraeve, U. Celano, W. Vandervorst, A. Redolfi, M. Houssa, M. Jurczak, L. Goux, In 2015 I.E. 8th Int. Mem. Work. (2015)Google Scholar
  82. 82.
    T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 21, 425205 (2010)CrossRefGoogle Scholar
  83. 83.
    K.-L. Lin, T.-H. Hou, Y.-J. Lee, J.-W. Chang, J.-H. Lin, J. Shieh, C.-T. Chou, T.-F. Lei, W.-H. Chang, W.-Y. Jang, C.-H. Lin, Jpn. J. Appl. Phys. 52, 31801 (2013)CrossRefGoogle Scholar
  84. 84.
    Z. Wang, H. Jiang, M.H. Jang, P. Lin, A. Ribbe, Q. Xia, J.J. Yang, Nano 8, 14023 (2016)Google Scholar
  85. 85.
    Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Nat. Commun. 5, 4232 (2014)Google Scholar
  86. 86.
    C. Yang, D. Shang, Y. Chai, L. Yan, B. Shen, Y. Sun, Phys. Chem. Chem. Phys. 18, 12466 (2016)CrossRefGoogle Scholar
  87. 87.
    K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, T. Sone, K. Endo, A. Kouchiyama, S. Sasaki, A. Maesaka, N. Yamada, H. Narisawa, In IEEE Int. Electron Devices Meet. (2007), pp. 783–786Google Scholar
  88. 88.
    L. Goux, K. Opsomer, R. Degraeve, R. Mller, C. Detavernier, D.J. Wouters, M. Jurczak, L. Altimime, J.A. Kittl, Appl. Phys. Lett. 99, 53502 (2011)CrossRefGoogle Scholar
  89. 89.
    W. Devulder, K. Opsomer, F. Seidel, A. Belmonte, R. Muller, B. De Schutter, H. Bender, W. Vandervorst, S. Van Elshocht, M. Jurczak, L. Goux, C. Detavernier, ACS Appl. Mater. Interfaces 5, 6984 (2013)CrossRefGoogle Scholar
  90. 90.
    W. Devulder, K. Opsomer, G. Rampelberg, B. De Schutter, K. Devloo-Casier, M. Jurczak, L. Goux, C. Detavernier, J. Mater. Chem. C 3, 12469 (2015)CrossRefGoogle Scholar
  91. 91.
    L. Goux, A. Belmonte, U. Celano, J. Woo, S. Folkersma, C.Y. Chen, A. Redolfi, A. Fantini, R. Degraeve, S. Clima, W. Vandervorst, M. Jurczak, In 2016 Symp. VLSI Technol. (2016)Google Scholar
  92. 92.
    C.-W. Hsu, Y.-F. Wang, C.-C. Wan, I.-T. Wang, C.-T. Chou, W.-L. Lai, Y.-J. Lee, T.-H. Hou, Nanotechnology 25, 165202 (2014)CrossRefGoogle Scholar
  93. 93.
    J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, Y.J. Kwon, X. Shao, C.S. Hwang, Adv. Mater. 27, 3811 (2015)CrossRefGoogle Scholar
  94. 94.
    B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y.Y. Chen, S. Clima, V. Paraschiv, H. Hody, C. Adelmann, M. Popovici, O. Richard, M. Jurczak, In 2015 Symp. VLSI Technol. (2015), pp. T132–T133Google Scholar
  95. 95.
    A.H. Edwards, H.J. Barnaby, K.A. Campbell, M.N. Kozicki, W. Liu, M.J. Marinella, Proc. IEEE 103, 1004 (2015)CrossRefGoogle Scholar
  96. 96.
    S. Yu, P.Y. Chen, IEEE Solid-State Circuits Mag. 8, 43 (2016)CrossRefGoogle Scholar
  97. 97.
    D.J. Wouters, R. Waser, M. Wuttig, Proc. IEEE 103, 1274 (2015)CrossRefGoogle Scholar
  98. 98.
    S. Menzel, U. B??ttger, M. Wimmer, and M. Salinga, Adv. Funct. Mater. 25, 6306 (2015).Google Scholar
  99. 99.
    Y. Deng, H. Chen, B. Gao, S. Yu, S. Wu, L. Zhao, B. Chen, Z. Jiang, X. Liu, T. Hou, Y. Nishi, J. Kang, and H.-S. P. Wong, In IEEE Int. Electron Devices Meet. (2013), p. 25.7.1–25.7.4.Google Scholar
  100. 100.
    I.G. Baek, C.J. Park, H. Ju, D.J. Seong, H.S. Ahn, J.H. Kim, M.K. Yang, S.H. Song, E.M. Kim, S.O. Park, C.H. Park, C.W. Song, G.T. Jeong, S. Choi, H.K. Kang, C. Chung, In IEEE Int. Electron Devices Meet. (2011), p. 31.8.1–31.8.4Google Scholar
  101. 101.
    H. Chen, S. Yu, B. Gao, P. Huang, J. Kang, H.P. Wong, In IEEE Int. Electron Devices Meet. (2012), p. 20.7.1–20.1.4Google Scholar
  102. 102.
    S. Yu, H. Chen, Y. Deng, B. Gao, Z. Jiang, J. Kang, H.-S.P. Wong, In 2013 Symp. VLSI Technol. (2013), pp. T158–T159Google Scholar
  103. 103.
    L. Zhang, S. Cosemans, D.J. Wouters, B. Govoreanu, G. Groeseneken, M. Jurczak, In 2013 I.E. 5th Int. Mem. Work. (2013), pp. 155–158Google Scholar
  104. 104.
    X. Xu, Q. Luo, T. Gong, H. Lv, S. Long, Q. Liu, S.S. Chung, J. Li, M. Liu, In 2016 Symp. VLSI Technol. (2016)Google Scholar
  105. 105.
    S. Spiga, T. Yanagida, and T. Kawai, Bottom‐up approaches for resistive switching memories, In in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 661–694.  https://doi.org/10.1002/9783527680870.ch23
  106. 106.
    Y. Lai, P. Xin, S. Cheng, J. Yu, Q. Zheng, Appl. Phys. Lett. 106, 31603 (2015)CrossRefGoogle Scholar
  107. 107.
    K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, J.S. Kim, B.H. Park, T. Kawai, Nano Lett. 11, 2114 (2011)CrossRefGoogle Scholar
  108. 108.
    Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie, F. Pan, Nano 3, 1917 (2011)Google Scholar
  109. 109.
    C.-W. Huang, J.-Y. Chen, C.-H. Chiu, W.-W. Wu, Nano Lett. 14, 2759 (2014)CrossRefGoogle Scholar
  110. 110.
    K. Oka, T. Yanagida, K. Nagashima, H. Tanaka, T. Kawai, J. Am. Chem. Soc. 131, 3434 (2009)CrossRefGoogle Scholar
  111. 111.
    L. He, Z.-M. Liao, H.-C. Wu, X.-X. Tian, D.-S. Xu, G.L.W. Cross, G.S. Duesberg, I.V. Shvets, D.-P. Yu, Nano Lett. 11, 4601 (2011)CrossRefGoogle Scholar
  112. 112.
    C. Cagli, F. Nardi, B. Harteneck, Z. Tan, Y. Zhang, D. Ielmini, Small 7, 2899 (2011)CrossRefGoogle Scholar
  113. 113.
    E.D. Herderick, K.M. Reddy, R.N. Sample, T.I. Draskovic, N.P. Padture, Appl. Phys. Lett. 95, 203505 (2009)CrossRefGoogle Scholar
  114. 114.
    D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano Lett. 3, 1255 (2003)CrossRefGoogle Scholar
  115. 115.
    B. Fuhrmann, H.S. Leipner, H.-R. Höche, L. Schubert, P. Werner, U. Gösele, Nano Lett. 5, 2524 (2005)CrossRefGoogle Scholar
  116. 116.
    H. Robatjazi, S.M. Bahauddin, L.H. Macfarlan, S. Fu, I. Thomann, Chem. Mater. 28, 4546 (2016)CrossRefGoogle Scholar
  117. 117.
    O. Nishinaga, T. Kikuchi, S. Natsui, R.O. Suzuki, Sci. Rep. 3, 2748 (2013)CrossRefGoogle Scholar
  118. 118.
    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)CrossRefGoogle Scholar
  119. 119.
    I. Karageorgos, J. Ryckaert, M.C. Tung, H.-S.P. Wong, R. Gronheid, J. Bekaert, E. Karageorgos, K. Croes, G. Vandenberghe, M. Stucchi, W. Dehaene, SPIE Proc. 9781, 97810N (2016)CrossRefGoogle Scholar
  120. 120.
    C.M. Bates, M.J. Maher, D.W. Janes, C.J. Ellison, C.G. Willson, Macromolecules 47, 2 (2014)CrossRefGoogle Scholar
  121. 121.
    D. Perego, S. Franz, M. Bestetti, L. Cattaneo, S. Brivio, G. Tallarida, S. Spiga, Nanotechnology 24, 45302 (2013)CrossRefGoogle Scholar
  122. 122.
    F. Ferrarese Lupi, T.J. Giammaria, F.G. Volpe, F. Lotto, G. Seguini, B. Pivac, M. Laus, M. Perego, ACS Appl. Mater. Interfaces 6, 21389 (2014)CrossRefGoogle Scholar
  123. 123.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS) (2015)Google Scholar
  124. 124.
    E. Choudhary, V. Szalai, RSC Adv. 6, 67992 (2016)CrossRefGoogle Scholar
  125. 125.
    R. Gronheid, P. Rincon Delgadillo, H. Pathangi, D. Van den Heuvel, D. Parnell, B.T. Chan, Y.-T. Lee, L. Van Look, Y. Cao, Y. Her, G. Lin, R. Harukawa, V. Nagaswami, L. D’Urzo, M. Somervell, P. Nealey, SPIE Proc. 9049, 904905 (2014)CrossRefGoogle Scholar
  126. 126.
    C. Bencher, H. Yi, J. Zhou, M. Cai, J. Smith, L. Miao, O. Montal, S. Blitshtein, A. Lavi, K. Dotan, H. Dai, J.Y. Cheng, D.P. Sanders, M. Tjio, S. Holmes, SPIE Proc. 8323, 83230N (2012)CrossRefGoogle Scholar
  127. 127.
    S. Brivio, G. Tallarida, D. Perego, S. Franz, D. Deleruyelle, C. Muller, S. Spiga, Appl. Phys. Lett. 101, 223510 (2012)CrossRefGoogle Scholar
  128. 128.
    S. Brivio, D. Perego, G. Tallarida, M. Bestetti, S. Franz, S. Spiga, Appl. Phys. Lett. 103, 153503 (2013)CrossRefGoogle Scholar
  129. 129.
    J. Song, J. Lee, Sci. Rep. 6, 18967 (2016)CrossRefGoogle Scholar
  130. 130.
    L. Ji, Y.-F. Chang, B. Fowler, Y.-C. Chen, T.-M. Tsai, K.-C. Chang, M.-C. Chen, T.-C. Chang, S.M. Sze, E.T. Yu, J.C. Lee, Nano Lett. 14, 813 (2014)CrossRefGoogle Scholar
  131. 131.
    J. Frascaroli, S. Brivio, F. Ferrarese Lupi, G. Seguini, L. Boarino, M. Perego, S. Spiga, ACS Nano 9, 2518 (2015)CrossRefGoogle Scholar
  132. 132.
    H. Masuda and K. Fukuda, Science (80-. ). 268, 1466 (1995).Google Scholar
  133. 133.
    O. Jessensky, F. Müller, U. Gösele, Appl. Phys. Lett. 72, 1173 (1998)CrossRefGoogle Scholar
  134. 134.
    H. Robatjazi, S.M. Bahauddin, L.H. Macfarlan, S. Fu, I. Thomann, Chem. Mater. 28, 4546 (2016)CrossRefGoogle Scholar
  135. 135.
    J. Hong, K. Kim, N. Kwon, J. Lee, D. Whang, I. Chung, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 28(735) (2010)Google Scholar
  136. 136.
    A. Al-Haddad, C. Wang, H. Qi, F. Grote, L. Wen, J. Bernhard, R. Vellacheri, S. Tarish, G. Nabi, U. Kaiser, Y. Lei, ACS Appl. Mater. Interfaces 8, 23348 (2016)CrossRefGoogle Scholar
  137. 137.
    S.I. Kim, J.H. Lee, Y.W. Chang, S.S. Hwang, K.-H. Yoo, Appl. Phys. Lett. 93, 33503 (2008)CrossRefGoogle Scholar
  138. 138.
    Y.-C. Huang, P.-Y. Chen, K.-F. Huang, T.-C. Chuang, H.-H. Lin, T.-S. Chin, R.-S. Liu, Y.-W. Lan, C.-D. Chen, C.-H. Lai, NPG Asia Mater. 6, e85 (2014)CrossRefGoogle Scholar
  139. 139.
    S. Brivio, G. Tallarida, E. Cianci, S. Spiga, Nanotechnology 25, 385705 (2014)CrossRefGoogle Scholar
  140. 140.
    S.-H. Lyu, J.-S. Lee, J. Mater. Chem. 22, 1852 (2012)CrossRefGoogle Scholar
  141. 141.
    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)CrossRefGoogle Scholar
  142. 142.
    H.-C. Kim, S.-M. Park, W.D. Hinsberg, Chem. Rev. 110, 146 (2010)CrossRefGoogle Scholar
  143. 143.
    M.A. Morris, Microelectron. Eng. 132, 207 (2015)CrossRefGoogle Scholar
  144. 144.
    F. Ferrarese Lupi, G. Aprile, T.J. Giammaria, G. Seguini, G. Zuccheri, N. De Leo, L. Boarino, M. Laus, M. Perego, ACS Appl. Mater. Interfaces 7, 23615 (2015)CrossRefGoogle Scholar
  145. 145.
    J. Frascaroli, G. Seguini, S. Spiga, M. Perego, L. Boarino, Nanotechnology 26, 215301 (2015)CrossRefGoogle Scholar
  146. 146.
    C.A. Ross, K.K. Berggren, J.Y. Cheng, Y.S. Jung, J.B. Chang, Adv. Mater. 26, 4386 (2014)CrossRefGoogle Scholar
  147. 147.
    H. Yi, X.Y. Bao, R. Tiberio, H.-S.P. Wong, Nano Lett. 15, 805 (2015)CrossRefGoogle Scholar
  148. 148.
    J. Frascaroli, S. Brivio, F. Ferrarese Lupi, G. Seguini, L. Boarino, M. Perego, S. Spiga, ACS Nano 9, 2518 (2015)CrossRefGoogle Scholar
  149. 149.
    A. Nunns, J. Gwyther, I. Manners, Polymer (Guildf) 54, 1269 (2013)CrossRefGoogle Scholar
  150. 150.
    C. Cummins, T. Ghoshal, J.D. Holmes, M.A. Morris, Adv. Mater. 28, 5586 (2016)CrossRefGoogle Scholar
  151. 151.
    J. Frascaroli, E. Cianci, S. Spiga, G. Seguini, M. Perego, ACS Appl. Mater. Interfaces 8, 33933 (2016)CrossRefGoogle Scholar
  152. 152.
    W.I. Park, J.M. Yoon, M. Park, J. Lee, S.K. Kim, J.W. Jeong, K. Kim, H.Y. Jeong, S. Jeon, K.S. No, J.Y. Lee, Y.S. Jung, Nano Lett. 12, 1235 (2012)CrossRefGoogle Scholar
  153. 153.
    B.K. You, W.I. Park, J.M. Kim, K. Il Park, H.K. Seo, J.Y. Lee, Y.S. Jung, K.J. Lee, ACS Nano 8, 9492 (2014)CrossRefGoogle Scholar
  154. 154.
    Y. Wu, H. Yi, Z. Zhang, Z. Jiang, J. Sohn, S. Wong, H.-S.P. Wong, In IEEE Int. Electron Devices Meet. (2013), p. 20.8.1–20.8.4Google Scholar

Copyright information

© Springer Science+Business Media New York 2017
corrected publication December/2017

Authors and Affiliations

  • Hong-Yu Chen
    • 1
    • 2
    Email author
  • Stefano Brivio
    • 3
  • Che-Chia Chang
    • 4
  • Jacopo Frascaroli
    • 3
  • Tuo-Hung Hou
    • 4
  • Boris Hudec
    • 4
  • Ming Liu
    • 5
  • Hangbing Lv
    • 5
  • Gabriel Molas
    • 6
  • Joon Sohn
    • 1
  • Sabina Spiga
    • 3
  • V. Mani Teja
    • 4
  • Elisa Vianello
    • 6
  • H.-S. Philip Wong
    • 1
  1. 1.Department of Electrical Engineering and Stanford SystemX AllianceStanford UniversityStanfordUSA
  2. 2.GigaDevice Semiconductor Inc.BeijingChina
  3. 3.Laboratorio MDM, IMM-CNRAgrate BrianzaItaly
  4. 4.Department of Electronics Engineering and Institute of ElectronicsNational Chiao Tung UniversityHsinchuTaiwan
  5. 5.Key Laboratory of Microelectronics Devices and Integrated TechnologyInstitute of Microelectronics, Chinese Academy of ScienceBeijingChina
  6. 6.CEA LetiGrenobleFrance

Personalised recommendations