Skip to main content
Log in

Interface-type resistive switching in perovskite materials

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Resistive switching (RS) is currently one of the hot topics in the frontier between materials science and microelectronics, crosslinking both research communities. Among the different types of RS phenomena that have been reported, this review focuses particularly on interface-type RS, for which the change in resistance is related to a modification in the materials properties occurring at the interface over the entire electrode area. In particular we have summarized the most interesting reports on perovskite oxides, a versatile oxide crystal structure which presents a plethora of functional properties depending on its exact composition and structural symmetry. We present the most relevant mechanisms inducing RS, such as valence change, due to a combination of oxygen vacancy drift and redox reactions; electronic correlations; and ferroelectricity. For each case we explain the physico-chemical processes triggered by the application of an external voltage (or current), which ultimately lead to a change in resistance at the interface between the metal electrode and the oxide. Special attention is paid to the material aspects of interface-type switching, and in particular to how the RS characteristics can be improved or triggered by cation doping and oxygen off-stoichiometry, by the introduction of additional layers and by changing the nature of the electrodes. Recent progress in memristive devices based on perovskites is also reported and the figures of merit reached are compared to those obtained for state-of-the-art filamentary type RS binary oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol 31(6), 63002 (2016)

    Article  Google Scholar 

  2. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys 75(7), 76502 (2012)

    Article  Google Scholar 

  3. R. Waser, Redox-based resistive switching memories. J. Nanosci. Nanotechnol. 12(10), 7628–7640 (2012)

    Article  Google Scholar 

  4. R. Waser, D. Ielmini, H. Akinaga, H. Shima, H.-S.P. Wong, J.J. Yang, S. Yu, Introduction to nanoionic elements for information technology. in Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (2016), pp. 1–30

  5. G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D. Suh, J.C. Park, S. Park, H.S. Kim, I.K. Yoo, U. Chung, I.T. Moon, Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses (2004), pp. 587–590

  6. H.Y. Peng, G.P. Li, J.Y. Ye, Z.P. Wei, Z. Zhang, D.D. Wang, G.Z. Xing, T. Wu, Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms (2010), pp. 19–21

  7. H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo, H. Hwang, Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application. Ieee 0(c), 8–11 (2005)

    Google Scholar 

  8. M. Hasan, R. Dong, H.J. Choi, D.S. Lee, D.-J. Seong, M.B. Pyun, H. Hwang, Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures. Appl. Phys. Lett. 92(20), 202102 (2008)

    Article  Google Scholar 

  9. L. Goux, S. Spiga, Unipolar resistive-switching mechanisms. in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 363–394

  10. A. Sawa, R. Meyer, Interface-type switching. in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 457–482

  11. R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film Memristive devices. Adv. Mater. 22(43), 4819–4822 (2010)

    Article  Google Scholar 

  12. V. Garcia, M. Bibes, Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 1–12 (2014)

    Article  Google Scholar 

  13. Z.B. Yan, J.-M. Liu, Resistance switching memory in perovskite oxides. Ann. Phys. (N. Y.) 358, 206–224 (2015)

    Article  Google Scholar 

  14. Semiconductor Industry Association, International Technology Roadmap for Semiconductors 2.0 2015 Edition, Beyond CMOS (2015)

  15. J.S. Lee, S. Lee, T.W. Noh, Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2(3), 31303 (2015)

    Article  Google Scholar 

  16. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R. Rep. 83, 1–59 (2014)

    Article  Google Scholar 

  17. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013)

    Article  Google Scholar 

  18. C. Baeumer, C. Schmitz, A.H.H. Ramadan, H. Du, K. Skaja, V. Feyer, P. Müller, B. Arndt, C.-L. Jia, J. Mayer, R.A. De Souza, C. Michael Schneider, R. Waser, R. Dittmann, S. Figure, Spectromicroscopic insights for rational design of redox-based memristive devices. Nat. Commun. 6, 8610 (2015)

    Article  Google Scholar 

  19. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.E. Karg, B.P. Andreasson, Role of oxygen vacancies in cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19(17), 2232–2235 (2007)

    Article  Google Scholar 

  20. M. Buckwell, L. Montesi, S. Hudziak, A. Mehonicç, A.J. Kenyon, Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale. 7, 18030–18035 (2015)

    Article  Google Scholar 

  21. T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, K. Kobayashi, T. Chikyow, Observation of filament formation process of Cu/HfO2/Pt ReRAM structure by hard x-ray photoelectron spectroscopy under bias operation. J. Mater. Res. 27(6), 869–878 (2012)

    Article  Google Scholar 

  22. Y. Yang, W. Lü, Y. Yao, J. Sun, C. Gu, L. Gu, Y. Wang, X. Duan, R. Yu, In situ TEM observation of resistance switching in titanate based device. Sci. Rep. 4, 3890 (2014)

    Article  Google Scholar 

  23. H.-S. Lee, H.-H. Park, M.J. Rozenberg, Manganite-based memristive heterojunction with tunable non-linear I-V characteristics. Nanoscale 7(15), 6444–6450 (2015)

    Article  Google Scholar 

  24. S. Asanuma, H. Akoh, H. Yamada, A. Sawa, Relationship between resistive switching characteristics and band diagrams of Ti/Pr1-xCaMnO3 junctions. Phys. Rev. B 80(23), 235113 (2009)

    Article  Google Scholar 

  25. J. Norpoth, S. Mildner, M. Scherff, J. Hoffmann, C. Jooss, In situ TEM analysis of resistive switching in manganite based thin-film heterostructures. Nanoscale 6(16), 9852–9862 (2014)

    Article  Google Scholar 

  26. S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40), 6306–6325 (2015)

    Article  Google Scholar 

  27. F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO 3-δ bits: The Memristor-based Cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7447 (2014)

    Article  Google Scholar 

  28. S.D. Ha, S. Ramanathan, Adaptive oxide electronics: A review. J. Appl. Phys. 110(7), 71101 (2011)

    Article  Google Scholar 

  29. P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448 (2014)

    Article  Google Scholar 

  30. V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)

    Article  Google Scholar 

  31. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX 3 ( X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B: Struct. Sci. 64(6), 702–707 (2008)

    Article  Google Scholar 

  32. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  33. H.D. Megaw, Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 58(3), 340–340 (1946)

    Article  Google Scholar 

  34. R.S. Roth, Classification of perovskite and other ABO3-type compounds. J. Res. Natl. Bur. Stand. (1934) 58(2), 75 (1957)

    Article  Google Scholar 

  35. A.K. Tagantsev, L.E. Cross, J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer, New York, 2010)

    Book  Google Scholar 

  36. R.M. Glaister, H.F. Kay, An investigation of the cubic-hexagonal transition in barium titanate. Proc. Phys. Soc. 76(5), 763–771 (1960)

    Article  Google Scholar 

  37. M. Zhu, P. Komissinskiy, A. Radetinac, Z. Wang, L. Alff, Joint effect of composition and strain on the anomalous transport properties of LaNiO3 films. J. Appl. Phys. 117(15), 155306 (2015)

    Article  Google Scholar 

  38. S. Vasala, M. Karppinen, A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 43(1), 1–36 (2015)

    Article  Google Scholar 

  39. B.V. Beznosikov, K.S. Aleksandrov, Perovskite-like crystals of the Ruddlesden-Popper series. Crystallogr. Rep. 45(5), 792–798 (2000)

    Article  Google Scholar 

  40. M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, R. Von der Mühll, O. Nguyen, M. Maglione, The Ba2LnFeNb4O15 ‘tetragonal tungsten bronze’: Towards RT composite multiferroics. Solid State Sci. 11(6), 1118–1123 (2009)

    Article  Google Scholar 

  41. S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  42. S.A. Prosandeyev, A.V. Fisenko, A.I. Riabchinski, I.A. Osipenko, I.P. Raevski, N. Safontseva, Study of intrinsic point defects in oxides of the perovskite family: I. Theory. J. Phys. Condens. Matter 8(36), 6705–6717 (1996)

    Article  Google Scholar 

  43. I.P. Raevski, S.M. Maksimov, A.V. Fisenko, S.A. Prosandeyev, I.A. Osipenko, P.F. Tarasenko, Study of intrinsic point defects in oxides of the perovskite family: II. Experiment. J. Phys. Condens. Matter 10(36), 8015–8032 (1998)

    Article  Google Scholar 

  44. T. Menke, P. Meuffels, R. Dittmann, K. Szot, R. Waser, Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO3. J. Appl. Phys. 105(6), 66104 (2009)

    Article  Google Scholar 

  45. R. Moos, K.H. Hardtl, Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400°C. J. Am. Ceram. Soc. 80(10), 2549–2562 (2005)

    Article  Google Scholar 

  46. R. Groenen, J. Smit, K. Orsel, A. Vailionis, B. Bastiaens, M. Huijben, K. Boller, G. Rijnders, G. Koster, Research update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition. APL Mater. 3(7), 70701 (2015)

    Article  Google Scholar 

  47. M.J. Akhtar, Z.-U.-N. Akhtar, R.A. Jackson, C.R.A. Catlow, Computer simulation studies of strontium titanate. J. Am. Ceram. Soc. 78(2), 421–428 (1995)

    Article  Google Scholar 

  48. F.A. Kröger, H.J. Vink, Relations between the concentrations of imperfactions in crystalline solids. Solid State Phys. 3(I), 310–435 (1956)

    Google Scholar 

  49. R.A. De Souza, Ion transport in metal oxides. in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 125–164

  50. E.W. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: A survey. Electronics 4(3), 586–613 (2015)

    Article  Google Scholar 

  51. S. Yu, Resisitive Switching Memory for Non-volatile Storage and Neuromorphic Computing (Stanford University, 2013)

  52. F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1–18 (2014)

    Google Scholar 

  53. H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo, H.H. Hyunsang, Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application. in IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest (2005), pp. 758–761

  54. K.-T. Park, S. Nam, D. Kim, P. Kwak, D. Lee, Y.-H. Choi, M. Choi, D. Kwak, D.-H. Kim, M.-S. Kim, H.-W. Park, S.-W. Shim, K. Kang, S. Park, K. Lee, H. Yoon, K. Ko, D. Shim, Y. Ahn, J. Ryu, D. Kim, K. Yun, J. Kwon, S. Shin, D. Byeon, K. Choi, J.-M. Han, K.-H. Kyung, J.-H. Choi, K. Kim, Three-dimensional 128 Gb MLC vertical nand flash memory with 24-WL stacked layers and 50 MB/s high-speed programming. IEEE J. Solid State Circuits 50(1), 204–213 (2015)

    Article  Google Scholar 

  55. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008)

    Article  Google Scholar 

  56. E. Mikheev, B.D. Hoskins, D.B. Strukov, S. Stemmer, Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nat. Commun. 5, 3990 (2014)

    Article  Google Scholar 

  57. S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89(4), 42904 (2006)

    Article  Google Scholar 

  58. M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp, Uncovering two competing switching mechanisms for epitaxial and ultra-thin strontium titanate-based resistive switching bits. ACS Nano 9, 10737–10748 (2015)

    Article  Google Scholar 

  59. C.H. Kim, Y. Ahn, J.Y. Son, SrTiO3 -based resistive switching memory device with graphene nanoribbon electrodes. J. Am. Ceram. Soc. 99(1), 9–11 (2016)

    Article  Google Scholar 

  60. Y. Cui, H. Peng, S. Wu, R. Wang, T. Wu, Complementary charge trapping and ionic migration in resistive switching of rare-earth manganite TbMnO3. ACS Appl. Mater. Interfaces 5(4), 1213–1217 (2013)

    Article  Google Scholar 

  61. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. A Math. Phys. Eng. Sci. 119(781), 173–181 (1928)

    Article  Google Scholar 

  62. L. Huang, B. Qu, L. Liu, Bistable resistive switching of pulsed laser deposited polycrystalline La0.67Sr0.33MnO3 films. in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (2008), pp. 936–939

  63. Z.L. Liao, P. Gao, Y. Meng, H.W. Zhao, X.D. Bai, J.D. Zhang, D.M. Chen, Electroforming and endurance behavior of Al/Pr0.7Ca0.3MnO3/Pt devices. Appl. Phys. Lett. 99(11), 113506 (2011)

    Article  Google Scholar 

  64. H. Nafe, Resistive switching: A solid-state electrochemical phenomenon. ECS J. Solid State Sci. Technol. 2(11), P423–P431 (2013)

    Article  Google Scholar 

  65. A.N. Morozovska, E.A. Eliseev, O.V. Varenyk, Y. Kim, E. Strelcov, A. Tselev, N.V. Morozovsky, S.V. Kalinin, Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response. J. Appl. Phys. 116(6), 66808 (2014)

    Article  Google Scholar 

  66. X. Chen, G. Wu, H. Zhang, N. Qin, T. Wang, F. Wang, W. Shi, D. Bao, Nonvolatile bipolar resistance switching effects in multiferroic BiFeO 3 thin films on LaNiO3-electrodized Si substrates. Appl. Phys. A Mater. Sci. Process. 100(4), 987–990 (2010)

    Article  Google Scholar 

  67. C.-H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8(6), 485–493 (2009)

    Article  Google Scholar 

  68. P.W.M. Blom, R.M. Wolf, J.F.M. Cillessen, M.P.C.M. Krijn, Ferroelectric Schottky Diode. Phys. Rev. Lett. 73(15), 2107–2110 (1994)

    Article  Google Scholar 

  69. X.T. Zhang, Q.X. Yu, Y.P. Yao, X.G. Li, Ultrafast resistive switching in SrTiO3:Nb single crystal. Appl. Phys. Lett. 97(22), 222117 (2010)

    Article  Google Scholar 

  70. X.J. Liu, X.M. Li, Q. Wang, W.D. Yu, R. Yang, X. Cao, X.D. Gao, L.D. Chen, Improved resistive switching properties in stacked structures. Solid State Commun. 150(1–2), 137–141 (2010)

    Article  Google Scholar 

  71. H. Schroeder, V.V. Zhirnov, R.K. Cavin, R. Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107(5), 54517 (2010)

    Article  Google Scholar 

  72. D. Seong, D. Lee, M. Pyun, J. Yoon, H. Hwang, Understanding of the switching mechanism of a Pt/Ni-Doped SrTiO 3 junction via current–voltage and capacitance–voltage measurements. Jpn. J. Appl. Phys. 47(12), 8749–8751 (2008)

    Article  Google Scholar 

  73. A. Odagawa, H. Sato, I.H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, H. Adachi, Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature. Phys. Rev. B 70(22), 224403 (2004)

    Article  Google Scholar 

  74. Y.C. Yang, F. Pan, F. Zeng, M. Liu, Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization. J. Appl. Phys. 106(12), 123705 (2009)

    Article  Google Scholar 

  75. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip, R. Comin, E.H. Sargent, Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014)

    Article  Google Scholar 

  76. E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V.T. Phuoc, M.-P. Besland, L. Cario, Resistive switching in Mott insulators and correlated systems. Adv. Funct. Mater. 25(40), 6287–6305 (2015)

    Article  Google Scholar 

  77. A.B.K. Chen, S.G. Kim, Y. Wang, W.-S. Tung, I.-W. Chen, A size-dependent nanoscale metal-insulator transition in random materials. Nat. Nanotechnol. 6(4), 237–241 (2011)

    Article  Google Scholar 

  78. S. Wu, X. Luo, S. Turner, H. Peng, W. Lin, J. Ding, A. David, B. Wang, G. Van Tendeloo, J. Wang, T. Wu, Nonvolatile resistive switching in Pt/LaNiO3/SrTiO3 heterostructures. Phys. Rev. X 3(4), 41027 (2013)

    Google Scholar 

  79. E.J. Yoo, M. Lyu, J. Yun, C.J. Kang, Y.J. Choi, L. Wang, Resistive switching behavior in organic-inorganic hybrid CH 3 NH 3 PbI 3 −x Cl x perovskite for resistive random access memory devices. Adv. Mater. 27(40), 6170–6175 (2015)

    Article  Google Scholar 

  80. A. Rose, Space-Charge-Limited Currents in Solids. Phys. Rev. 97(6), 1538–1544 (1955)

    Article  Google Scholar 

  81. K. Zheng, K. Žídek, M. Abdellah, M.E. Messing, M.J. Al-Marri, T. Pullerits, Trap states and their dynamics in organometal halide perovskite nanoparticles and bulk crystals. J. Phys. Chem. C 120(5), 3077–3084 (2016)

    Article  Google Scholar 

  82. J.G. Bednorz, K.A. Müller, Perovskite-type oxides—the new approach to high- T c superconductivity. Rev. Mod. Phys. 60(3), 585–600 (1988)

    Article  Google Scholar 

  83. Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200(1), 1–23 (1999)

    Article  Google Scholar 

  84. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  Google Scholar 

  85. M. Cyrot, Theory of mott transition : Applications to transition metal oxides. J. Phys. 33(1), 125–134 (1972)

    Article  Google Scholar 

  86. K.-H. Xue, C.A. Paz de Araujo, J. Celinska, C. McWilliams, A non-filamentary model for unipolar switching transition metal oxide resistance random access memories. J. Appl. Phys. 109(9), 91602 (2011)

    Article  Google Scholar 

  87. R. Fors, S.I. Khartsev, A.M. Grishin, Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Phys. Rev. B: Condens. Matter Mater. Phys. 71(4), 1–10 (2005)

    Article  Google Scholar 

  88. T. Oka, N. Nagaosa, Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance. Phys. Rev. Lett. 95(26), 266403 (2005)

    Article  Google Scholar 

  89. G. Kotliar, D. Vollhardt, Strongly correlated materials: Insights from dynamical mean-field theory. Phys. Today 57(3), 53–59 (2004)

    Article  Google Scholar 

  90. E. Morosan, D. Natelson, A.H. Nevidomskyy, Q. Si, Strongly correlated materials. Adv. Mater. 24(36), 4896–4923 (2012)

    Article  Google Scholar 

  91. M.J. Rozenberg, I.H. Inoue, M.J. Sánchez, Strong electron correlation effects in nonvolatile electronic memory devices. Appl. Phys. Lett. 88(3), 33510 (2006)

    Article  Google Scholar 

  92. F. Nakamura, M. Sakaki, Y. Yamanaka, S. Tamaru, T. Suzuki, Y. Maeno, Electric-field-induced metal maintained by current of the Mott insulator Ca2RuO4. Sci. Rep. 3, 2536 (2013)

    Article  Google Scholar 

  93. J.F. Scott, Applications of modern ferroelectrics. Science (80-. ). 315(5814), 954–959 (2007)

    Article  Google Scholar 

  94. S.L. Miller, P.J. McWhorter, Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72(12), 5999 (1992)

    Article  Google Scholar 

  95. T. Oikawa, H. Morioka, A. Nagai, H. Funakubo, K. Saito, Thickness scaling of polycrystalline Pb(Zr,Ti)O3 films down to 35 nm prepared by metalorganic chemical vapor deposition having good ferroelectric properties. Appl. Phys. Lett. 85(10), 1754 (2004)

    Article  Google Scholar 

  96. A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N.D. Mathur, M. Bibes, A. Barthélémy, Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7(2), 101–104 (2011)

    Article  Google Scholar 

  97. A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H. Bin Lu, G.Z. Yang, A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23(10), 1277–1281 (2011)

    Article  Google Scholar 

  98. H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova, A. Gloter, S. Xavier, J. Grollier, E. Jacquet, C. Carrétéro, C. Deranlot, M. Bibes, A. Barthélémy, Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7(6), 5385–5390 (2013)

    Article  Google Scholar 

  99. P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A.P. Baddorf, S.V. Kalinin, Polarization control of electron tunneling into ferroelectric surfaces. Science (80-. ). 324(5933), 1421–1425 (2009)

    Article  Google Scholar 

  100. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  101. D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, W.Q. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys. Rev. B 73(24), 245427 (2006)

    Article  Google Scholar 

  102. Y.J. Fu, F.J. Xia, Y.L. Jia, C.J. Jia, J.Y. Li, X.H. Dai, G.S. Fu, B.Y. Zhu, B.T. Liu, Bipolar resistive switching behavior of La0.5Sr0.5CoO3−σ films for nonvolatile memory applications. Appl. Phys. Lett. 104(22), 223505 (2014)

    Article  Google Scholar 

  103. M. Hamaguchi, K. Aoyama, S. Asanuma, Y. Uesu, T. Katsufuji, Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films. Appl. Phys. Lett. 88(14), 142508 (2006)

    Article  Google Scholar 

  104. C. Acha, A. Schulman, M. Boudard, K. Daoudi, T. Tsuchiya, Transport mechanism through metal-cobaltite interfaces. Appl. Phys. Lett. 109(1), 11603 (2016)

    Article  Google Scholar 

  105. Z. Othmen, A. Schulman, K. Daoudi, M. Boudard, C. Acha, H. Roussel, M. Oueslati, T. Tsuchiya, Structural, electrical and magnetic properties of epitaxial La0.7Sr0.3CoO3 thin films grown on SrTiO3 and LaAlO3 substrates. Appl. Surf. Sci. 306, 60–65 (2014)

    Article  Google Scholar 

  106. A. Bozhko, M. Shupegin, T. Takagi, Space-charge-limited current in hydrogenated amorphous carbon films containing silicon and oxygen. Diam. Relat. Mater. 11(10), 1753–1759 (2002)

    Article  Google Scholar 

  107. C. Acha, Dynamical behaviour of the resistive switching in ceramic YBCO/metal interfaces. J. Phys. D. Appl. Phys. 44(34), 345301 (2011)

    Article  Google Scholar 

  108. F. Gomez-Marlasca, N. Ghenzi, A.G. Leyva, C. Albornoz, D. Rubi, P. Stoliar, P. Levy, Modeling electronic transport mechanisms in metal-manganite memristive interfaces. J. Appl. Phys. 113(14), 144510 (2013)

    Article  Google Scholar 

  109. Semiconductor Industry Association, International Technology Roadmap for Semiconductors 2011 Edition (2011)

  110. Semiconductor Industry Association, International Technology Roadmap for Semiconductors 2.0 2015 Edition, More Moore (2015)

  111. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)

    Article  Google Scholar 

  112. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I.I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10(8), 625–630 (2011)

    Article  Google Scholar 

  113. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91(9), 92110 (2007)

    Article  Google Scholar 

  114. Y.Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, Endurance/retention trade-off on HfO2/metal cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60(3), 1114–1121 (2013)

    Article  Google Scholar 

  115. H.Y. Lee, Y.S. Chen, P.S. Chen, P.Y. Gu, Y.Y. Hsu, S.M. Wang, W.H. Liu, C.H. Tsai, S.S. Sheu, P.C. Chiang, W.P. Lin, C.H. Lin, W.S. Chen, F.T. Chen, C.H. Lien, M.-J. Tsai, Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance. in 2010 International Electron Devices Meeting (2010), p. 19.7.1–19.7.4

  116. M.Y. Song, Y. Seo, Y.S. Kim, H.D. Kim, H.-M. An, B.H. Park, Y.M. Sung, T.G. Kim, Realization of one-diode–type resistive-switching memory with Cr–SrTiO3 film. Appl. Phys. Express 5(9), 91202 (2012)

    Article  Google Scholar 

  117. J.P.B. Silva, K. Kamakshi, K.C. Sekhar, J.A. Moreira, A. Almeida, M. Pereira, M.J.M. Gomes, Light-controlled resistive switching in laser-assisted annealed Ba0.8Sr0.2TiO3 thin films. Phys. Status Solidi 213(4), 1082–1087 (2016)

    Article  Google Scholar 

  118. Z. Yan, Y. Guo, G. Zhang, J.-M. Liu, High-performance programmable memory devices based on co-doped BaTiO3. Adv. Mater. 23(11), 1351–1355 (2011)

    Article  Google Scholar 

  119. R. Collier, Transmission Lines (Cambridge University Press, 2013)

  120. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)

    Article  Google Scholar 

  121. R.A. De Souza, The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys. Chem. Chem. Phys. 11(43), 9939 (2009)

    Article  Google Scholar 

  122. R.A. De Souza, F. Gunkel, S. Hoffmann-Eifert, R. Dittmann, Finite-size versus interface-proximity effects in thin-film epitaxial SrTiO3. Phys. Rev. B 89(24), 241401 (2014)

    Article  Google Scholar 

  123. H. Nili, S. Walia, A.E. Kandjani, R. Ramanathan, P. Gutruf, T. Ahmed, S. Balendhran, V. Bansal, D.B. Strukov, O. Kavehei, M. Bhaskaran, S. Sriram, Donor-induced performance tuning of amorphous SrTiO 3 memristive nanodevices: Multistate resistive switching and mechanical tunability. Adv. Funct. Mater. 25(21), 3172–3182 (2015)

    Article  Google Scholar 

  124. V. Metlenko, A.H.H. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann-Eifert, R. Dittmann, R. Waser, R.A. De Souza, Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3? Nanoscale 6(21), 12864–12876 (2014)

    Article  Google Scholar 

  125. A.M. Saranya, D. Pla, A. Morata, A. Cavallaro, J. Canales-Vázquez, J.A. Kilner, M. Burriel, A. Tarancón, Engineering mixed ionic electronic conduction in La 0.8 Sr 0.2 MnO 3+ δ nanostructures through fast grain boundary oxygen diffusivity. Adv. Energy Mater. 5(11), 1500377 (2015)

    Article  Google Scholar 

  126. S. Lee, A. Sangle, P. Lu, A. Chen, W. Zhang, J.S. Lee, H. Wang, Q. Jia, J.L. MacManus-Driscoll, Novel electroforming-free nanoscaffold memristor with very high uniformity, tunability, and density. Adv. Mater. 26(36), 6284–6289 (2014)

    Article  Google Scholar 

  127. X.G. Guo, X.S. Chen, Y.L. Sun, L.Z. Sun, X.H. Zhou, W. Lu, Electronic band structure of Nb doped SrTiO3 from first principles calculation. Phys. Lett. Sect. A Gen. At. Solid State Phys. 317(5–6), 501–506 (2003)

    Google Scholar 

  128. T. Harada, I. Ohkubo, K. Tsubouchi, H. Kumigashira, T. Ohnishi, M. Lippmaa, Y. Matsumoto, H. Koinuma, M. Oshima, Trap-controlled space-charge-limited current mechanism in resistance switching at Al∕Pr[sub 0.7]Ca[sub 0.3]MnO[sub 3] interface. Appl. Phys. Lett. 92, 222113 (2008)

    Article  Google Scholar 

  129. D.S. Kim, C.E. Lee, Y.H. Kim, Y.T. Kim, Effect of oxygen annealing on Pr0.7Ca0.3MnO 3 thin film for colossal electroresistance at room temperature. J. Appl. Phys. 100(9), 0–4 (2006)

    Google Scholar 

  130. T. Yamamoto, R. Yasuhara, I. Ohkubo, H. Kumigashira, M. Oshima, Formation of transition layers at metal perovskite oxide interfaces showing resistive switching behaviors. J. Appl. Phys. 110(5) (2011)

  131. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073 (2004)

    Article  Google Scholar 

  132. R. Yang, X.M. Li, W.D. Yu, X.J. Liu, X.D. Gao, Q. Wang, L.D. Chen, Resistance-switching properties of La0.67Ca 0.33MnO3 thin films with Ag-Al alloy top electrodes. Appl. Phys. A Mater. Sci. Process. 97(1), 85–90 (2009)

    Article  Google Scholar 

  133. R. Dong, W.F. Xiang, D.S. Lee, S.J. Oh, D.J. Seong, S.H. Heo, H.J. Choi, M.J. Kwon, M. Chang, M. Jo, M. Hasan, H. Hwang, Improvement of reproducible hysteresis and resistive switching in metal- La0.7 Ca0.3 Mn O3 -metal heterostructures by oxygen annealing. Appl. Phys. Lett. 90(18), 10–13 (2007)

    Google Scholar 

  134. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88(23), 232112 (2006)

    Article  Google Scholar 

  135. N.H. Chan, R.K. Sharma, D.M. Smyth, Nonstoichiometry in acceptor-doped BaTi03. J. Am. Ceram. Soc. 65(3), 167–170 (1981)

    Article  Google Scholar 

  136. T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, Y. Tokura, Electrical properties and colossal electroresistance of heteroepitaxial SrRu O3/Sr Ti1-x Nbx O3 Schottky junctions. Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 16–21 (2007)

    Article  Google Scholar 

  137. T. You, X. Ou, G. Niu, F. Bärwolf, G. Li, N. Du, D. Bürger, I. Skorupa, Q. Jia, W. Yu, X. Wang, O.G. Schmidt, H. Schmidt, Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes. Sci. Rep. 5, 18623 (2015)

    Article  Google Scholar 

  138. Z. Xu, K. Jin, L. Gu, Y. Jin, C. Ge, C. Wang, H. Guo, H. Lu, R. Zhao, G. Yang, Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. Small 8(8), 1279–1284 (2012)

    Article  Google Scholar 

  139. S. Zhong, Y. Cui, Metal and annealing atmospheres dependence of resistive switching in metal / Nb 0 . 7wt % -SrTiO 3 interfaces. Curr. Appl. Phys. 13(5), 913–918 (2013)

    Article  Google Scholar 

  140. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004)

    Article  Google Scholar 

  141. R. Ortega-Hernandez, M. Coll, J. Gonzalez-Rosillo, A. Palau, X. Obradors, E. Miranda, T. Puig, J. Suñe, Resistive switching in CeO2/La0.8Sr0.2MnO3 bilayer for non-volatile memory applications. Microelectron. Eng. 147, 37–40 (2015)

    Article  Google Scholar 

  142. H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48(11), 4729–4733 (1977)

    Article  Google Scholar 

  143. C. Park, Y. Seo, J. Jung, D.-W. Kim, Electrode-dependent electrical properties of metal/Nb-doped SrTiO[sub 3] junctions. J. Appl. Phys. 103(5), 54106 (2008)

    Article  Google Scholar 

  144. T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86(1), 7–10 (2005)

    Article  Google Scholar 

  145. H.-S. Lee, J.A. Bain, S. Choi, P.A. Salvador, Electrode influence on the transport through SrRuO3 ∕ Cr-doped SrZrO3/metal junctions. Appl. Phys. Lett. 90(20) (2007)

  146. C.R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes. Solid State Electron. 8(4), 395–399 (1965)

    Article  Google Scholar 

  147. Z.T. Xu, K.J. Jin, L. Gu, Y.L. Jin, C. Ge, C. Wang, H.Z. Guo, H. Bin Lu, R.Q. Zhao, G.Z. Yang, Evidence for a crucial role played by oxygen vacancies in LaMnO 3 resistive switching memories. Small 8(8), 1279–1284 (2012)

    Article  Google Scholar 

  148. E.M. Bourim, Y. Kim, D. Kim, Interface state effects on resistive switching behaviors of Pt / Nb-doped SrTiO 3 single-crystal Schottky junctions. ECS J. Solid State Sci. Technol. 3(7), N95–N101 (2014)

    Article  Google Scholar 

  149. F. Messerschmitt, M. Kubicek, J.L.M. Rupp, How does moisture affect the physical property of Memristance for anionic-electronic resistive switching memories? Adv. Funct. Mater. 25(32), 5117–5125 (2015)

    Article  Google Scholar 

  150. Z. Chen, C. Lu, Humidity sensors: A review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005)

    Article  Google Scholar 

  151. International Technology Roadmap for Semiconductors 2.0. Section 6: Beyond CMOS (2015)

Download references

Acknowledgments

This work has been partially supported by the LabEx Minos ANR-10-LABX-55-01 and by two ANR funded projects MICROSWITCH (ANR-14-ACHN-0012) and Alps Memories (ANR-15-CE24-0018). Dr. Carlos Acha is kindly acknowledged for critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Burriel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagdzevicius, S., Maas, K., Boudard, M. et al. Interface-type resistive switching in perovskite materials. J Electroceram 39, 157–184 (2017). https://doi.org/10.1007/s10832-017-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0087-9

Keywords

Navigation