Advertisement

Journal of Electroceramics

, Volume 36, Issue 1–4, pp 165–169 | Cite as

Plasma-enhanced atomic layer deposition of tantalum nitride thin films using tertiary-amylimido-tris(dimethylamido)tantalum and hydrogen plasma

  • Ha-Jin Lee
  • Jin-Seong Park
  • Se-Hun Kwon
Article

Abstract

Plasma-enhanced atomic layer deposition (PEALD) of tantalum nitride (TaN) thin films was investigated at a growth temperature of 230 °C using an alternating supply of tertiary-amylimido-tris(dimethylamido)tantalum (TAIMATA, Ta[NC(CH3)2C2H5][N(CH3)2]3) and hydrogen (H2) plasma. As the H2 plasma power increased from 75 to 175 W, the electrical resistivity of the films was improved from 1900 to 680 μΩ·cm, mainly due to the improved crystallinity. Moreover, the preferred orientation ratio between TaN (200) and TaN (111) planes also abruptly increased from 0.8 to 2.8 with increasing the H2 plasma power. This preferred orientation change of the films from (111) to (200) improves the adhesion properties between Cu and TaN, while the Cu diffusion barrier performance was not significantly affected.

Keywords

Tantalum nitride thin films Plasma-enhanced atomic layer deposition Preferred orientation Microstructure Copper diffusion barrier 

Notes

Acknowledgments

This research was supported by the Global Frontier R&D Program (2013M3A6B1078874) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning.

References

  1. 1.
    S. P. Murarka, R. J. Gutmann, Thin Solid Films 236, 257 (1993)CrossRefGoogle Scholar
  2. 2.
    J. Torres, Appl. Surf. Sci. 91, 112 (1995)CrossRefGoogle Scholar
  3. 3.
    Q. Xie, X. P. Qu, J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen, G. P. Ru, Appl. Surf. Sci. 253, 1666 (2006)CrossRefGoogle Scholar
  4. 4.
    S. H. Kwon, O. K. Kwon, J. S. Min, S. W. Kang, J. Electrochem. Soc. 153, G578 (2006)CrossRefGoogle Scholar
  5. 5.
    F. Volpi, L. Cadix, G. Berthome, E. Blanquet, N. Jourdan, T. Torres, Microelectron. Eng. 85, 2068 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Y. Kim, K. W. Lee, H. O. Park, Y. D. Kim, H. Jeon, J. Korean. Phys. Soc. 45, 1069 (2004)Google Scholar
  7. 7.
    H. Kim, A. J. Kellock, S. M. Rossnagel, J. Appl. Phys. 92, 7080 (2002)CrossRefGoogle Scholar
  8. 8.
    H. S. Chung, J. D. Kwon, S. W. Kang, J. Electrochem. Soc. 153, C751 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Li, H. S. Lu, Y. W. Wang, X. P. Qu, Microelectron. Eng. 88, 635 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. R. Shin, W. S. Kwack, Y. C. Park, J. H. Kim, S. Y. Shin, K. I. Moon, H. W. Lee, S. H. Kwon, Mater. Res. Bull. 47, 790 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Wang, Z. H. Cao, J. A. Syed, K. Hu, Q. W. She, X. K. Meng, Electrochem. Solid-State Lett. 15, H188 (2012)CrossRefGoogle Scholar
  12. 12.
    X. P. Qu, J. J. Tan, M. Zhou, T. Chen, Q. Xie, G. P. Ru, B. Z. Li, Appl. Phys. Lett. 88, 151912 (2006)CrossRefGoogle Scholar
  13. 13.
    J. W. Hong, K. I. Choi, Y. K. Lee, S. G. Park, S. W. Lee, J. M. Lee, S. B. Kang, G. H. Choi, S. T. Kim, U. I. Chung, J. T. Moon, Interconnect Technol. Conf. (2004). doi: 10.1109/IITC.2004.1345665 Google Scholar
  14. 14.
    K. H. Kim, S. J. Jeong, J. S. Yoon, Y. M. Kim, S. H. Kwon, ECS Trans. 25, 301 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Elangovan, S. Murugeshan, D. Mangalaraj, P. Kuppusami, S. Khan, C. Sudha, V. Ganesan, R. Divakar, E. Mohandas, J. Alloys Compd. 509, 6400 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Knuyt, C. Quaeyhaegens, J. D. Haen, L. M. Stals, Thin Solid Films 258, 159 (1995)CrossRefGoogle Scholar
  17. 17.
    S. J. Jeong, Y. R. Shin, W. S. Kwack, H. W. Lee, Y. K. Jeong, D. I. Kim, H. C. Kim, S. H. Kwon, Surf. Coat. Technol. 205, 5009 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Wei, J. Y. Yen, Diam. Relat. Mater. 16, 1325 (2007)CrossRefGoogle Scholar
  19. 19.
    M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, H. T. Chiu, J. Appl. Phys. 79, 6932 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringPusan National UniversityBusanSouth Korea
  2. 2.Department of Materials Science and EngineeringHanyang UniversitySeongdong-guSouth Korea
  3. 3.Global Frontier Center for Hybrid Interface MaterialsBusanSouth Korea
  4. 4.Department of Applied Hybrid Materials, School of Convergence SciencePusan National UniversityBusanSouth Korea

Personalised recommendations