Journal of Electroceramics

, Volume 36, Issue 1–4, pp 1–7 | Cite as

Normal-to-relaxor ferroelectric phase transition and electrical properties in Nb-modified 0.72BiFeO3-0.28BaTiO3 ceramics



Perovskite-type 0.72BiFeO3-0.28BaTi1-x Nb x O3 (BF-BTNx) ceramics were fabricated via a conventional oxide-mixed method. The phase transition behaviors, composition-dependent grain size, dielectric, ferroelectric and piezoelectric properties were investigated as a function of Nb content. The temperature dependence of dielectric permittivity showed that thermally driven normal to diffuse ferroelectric transition and Nb-doping induced normal to relaxor ferroelectric transition. Simultaneously, the butterfly shape to sprout shape transition for electric-field-induced strain curves and saturation to slim P-E hysteresis loops transition were associated with the normal-to-relaxor transition. And the low hysteresis strain curves for relaxor BF-BTNx ceramics indicated that the system was a promising candidate for high precision actuation applications. In addition, XRD results revealed that Nb-doping induced a structural transition from rhombohedral phase to pseudo-cubic phase, which may be the origin of normal-to-relaxor ferroelectric phase transition.


Perovskite Relaxor ferroelectrics Normal ferroelectrics Normal to relaxor ferroelectric transition 



Part of this work was financially supported by the National Nature Science Foundation of China (11564007, 61561015, 61361007 and 51462005) and Guangxi Key Laboratory of Information Materials (1310001-Z) and the Natural Science Foundation of Guangxi (Grants No. 2012GXNSFGA60002 and 2015GXNSFAA 139250).


  1. 1.
    G. Catalan, J. F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Wu, X. Chen, J. Zhang, X. Chen, J. Appl. Phys. 111, 053927 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, L. Zhou, M. Zhang, X. Chen, J. Liu, Z. Liu, Appl. Phys. Lett. 84, 1731 (2004)CrossRefGoogle Scholar
  4. 4.
    A. Sagdeo, P. Mondal, A. Upadhyay, A. K. Sinha, A. K. Srivastava, S. M. Gupta, P. Chowdhury, T. Ganguli, S. K. Deb, Solid State Sci. 18, 1 (2013)CrossRefGoogle Scholar
  5. 5.
    D. V. Karpinsky, I. O. Troyanchuk, M. Tovar, V. Sikolenko, V. Efimov, E. Efimova, V. Y. Shur, A. L. Kholkin, J. Am. Ceram. Soc. 97, 2631 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, D. Damjanovic, J. Am. Ceram. Soc. 97, 1993 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, D. Collison, J. Eur. Ceram. Soc. 30, 727 (2010)CrossRefGoogle Scholar
  8. 8.
    S. K. Pradhan, B. K. Roul, Phys. B Condens. Matter 406, 3313 (2011)CrossRefGoogle Scholar
  9. 9.
    K. S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101 (2008)CrossRefGoogle Scholar
  10. 10.
    T. Wang, C. Tu, Y. Ding, T. Lin, C. Ku, W. Yang, H. Yu, K. Wu, Y. Yao, H. Lee, Curr. Appl. Phys. 11, S240 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Wan, Y. Li, Q. Li, W. Zhou, Q. Zheng, X. Wu, C. Xu, B. Zhu, D. Lin, J. Am. Ceram. Soc. 97, 1809 (2014)CrossRefGoogle Scholar
  12. 12.
    Q. Wang, Z. Wang, X. Liu, X. Chen, J. Am. Ceram. Soc. 95, 670 (2012)CrossRefGoogle Scholar
  13. 13.
    Z. Ma, Z. Tian, J. Li, C. Wang, S. Huo, H. Duan, S. Yuan, Solid Stat. Sci. 13, 2196 (2011)CrossRefGoogle Scholar
  14. 14.
    Q. Xu, Y. Sheng, M. Khalid, Y. Cao, Y. Wang, X. Qiu, W. Zhang, M. He, S. Wang, S. Zhou, Sci. Rep. 5, 9093 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Singh, A. Senyshyn, H. Fuess, S. J. Kennedy, D. Pandey, Phys. Rev. B 89, 024108 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, J. Am. Ceram. Soc. 96, 3163 (2013)Google Scholar
  17. 17.
    S. O. Leontsev, R. E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)CrossRefGoogle Scholar
  18. 18.
    C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, J. Chen, W. Li, H. Wang, Appl. Phys. Lett. 101, 032901 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, J. Eur. Ceram. Soc. 33, 1177 (2013)CrossRefGoogle Scholar
  20. 20.
    L. E. Cross, Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  21. 21.
    A. A. Bokov, Z. G. Ye, J. Mater. Sci. 41, 31 (2006)CrossRefGoogle Scholar
  22. 22.
    G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961)Google Scholar
  23. 23.
    H. Cao, J. Li, D. Viehland, J. Appl. Phys. 100, 034110 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Y. Kim, H. M. Jang, Appl. Phys. Lett. 77, 3824 (2000)CrossRefGoogle Scholar
  25. 25.
    G. Deng, G. Li, A. Ding, Q. Yin, Appl. Phys. Lett. 87, 192905 (2005)CrossRefGoogle Scholar
  26. 26.
    G. A. Samara, J. Phys. Condens. Matter 15, R367 (2003)CrossRefGoogle Scholar
  27. 27.
    A. Singh, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Phys. Rev. B 85, 064116 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Zhang, W. Jo, K. Wang, K. G. Webber, Ceram. Int. 40, 4759 (2014)CrossRefGoogle Scholar
  29. 29.
    J. S. Kim, C. I. Cheon, P. W. Jang, Y. N. Choi, C. H. Lee, J. Eur. Ceram. Soc. 24, 1551 (2004)CrossRefGoogle Scholar
  30. 30.
    J. F. Scott, J. Phys. Condens. Matter 20, 021001 (2008)CrossRefGoogle Scholar
  31. 31.
    Y. Yoneda, K. Yoshii, S. Kohara, S. Kitagawa, S. Mori, Jpn. J. Appl. Phys. 47, 7590 (2008)CrossRefGoogle Scholar
  32. 32.
    S. O. Leontsev, R. E. Eitel, J. Mater. Res. 26, 9 (2011)CrossRefGoogle Scholar
  33. 33.
    T. Ozaki, S. Mori, Jpn. J. Appl. Phys. 48, 09KC07 (2009)Google Scholar
  34. 34.
    H. Bea, B. Ziegler, M. Bibes, A. Barthelemy, P. Paruch, J. Phys. Condens. Matter 23, 142201 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Khodabakhsh, C. Sen, H. Khassaf, M. A. Gulgun, I. B. Misirlioglu, J. Alloys Compd. 604, 117 (2014)CrossRefGoogle Scholar
  36. 36.
    C. Lei, A. A. Bokov, Z. G. Ye, J. Appl. Phys. 101, 084105 (2007)CrossRefGoogle Scholar
  37. 37.
    R. Zhang, J. Li, D. Viehland, J. Am. Ceram. Soc. 87, 864 (2004)CrossRefGoogle Scholar
  38. 38.
    A. A. Bokov, M. Maglione, Z. G. Ye, J. Phys. Condens. Matter 19, 092001 (2007)CrossRefGoogle Scholar
  39. 39.
    H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, M. Reece, J. Adv. Dielectr. 1, 107 (2011)CrossRefGoogle Scholar
  40. 40.
    J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, J. Appl. Phys. 114, 044103 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, X. Gao, J. Am. Ceram. Soc. 96, 3133 (2013)CrossRefGoogle Scholar
  42. 42.
    K. T. P. Seifert, W. Jo, J. Rodel, J. Am. Ceram. Soc. 93, 1392 (2010)Google Scholar
  43. 43.
    K. Wang, A. Hussain, W. Jo, J. Rodel, J. Am. Ceram. Soc. 95, 2241 (2012)CrossRefGoogle Scholar
  44. 44.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rodel, J. Electroceram. 29, 71 (2012)CrossRefGoogle Scholar
  45. 45.
    J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRefGoogle Scholar
  46. 46.
    W. Kleemann, Phys. Status Solidi B 251, 1993 (2014)CrossRefGoogle Scholar
  47. 47.
    R. Fisch, Phys. Rev. B 67, 094110 (2003)CrossRefGoogle Scholar
  48. 48.
    W. Kleemann, J. Adv. Dielectr. 2, 1241001 (2012)CrossRefGoogle Scholar
  49. 49.
    M. Li, L. Li, J. Zang, D. C. Sinclair, Appl. Phys. Lett. 106, 102904 (2015)CrossRefGoogle Scholar
  50. 50.
    R. Theissmann, L. A. Schmitt, J. Kling, R. Schierholz, K. A. Schonau, H. Fuess, M. Knapp, H. Kungl, M. J. Hoffmann, J. Appl. Phys. 102, 024111 (2007)CrossRefGoogle Scholar
  51. 51.
    K. A. Schonau, L. A. Schmitt, M. Knapp, H. Fuess, R. A. Eichel, H. Kungl, M. J. Hoffmann, Phys. Rev. B 75, 184117 (2007)CrossRefGoogle Scholar
  52. 52.
    A. Singh, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Phys. Rev. B 88, 024113 (2013)CrossRefGoogle Scholar
  53. 53.
    H. Yabuta, M. Shimada, T. Watanabe, J. Hayashi, M. Kubota, K. Miura, T. Fukui, I. Fujii, S. Wada, Jpn. J. Appl. Phys. 51, 09LD04 (2012)CrossRefGoogle Scholar
  54. 54.
    T. Ozaki, S. Kitagawa, S. Nishihara, Y. Hosokoshi, M. Suzuki, Y. Noguchi, M. Miyayama, S. Mori, Ferroelectrics 385, 6155 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Experiment Center of Information ScienceGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations