Advertisement

Journal of Electroceramics

, Volume 35, Issue 1–4, pp 141–147 | Cite as

Structural and electrical characterizations of ZnO:In/PS/Si heterojunction deposited by rf-magnetron sputtering

  • H. Belaid
  • M. Nouiri
  • A. Sayari
  • Z. Ben Ayadi
  • K. Djessas
  • L. El Mir
Article

Abstract

Indium doped zinc oxide (IZO) thin film has been deposited on p-type porous silicon (PS) substrate by rf-magnetron sputtering of IZO aerogel nanoparticles at room temperature to obtain n-IZO/PS/p-Si heterojunction diode. The obtained IZO film, with a thickness of about 400 nm using indium concentration of 4 at.%, was polycrystalline with a hexagonal wurtzite structure and preferentially orientation in the (002) crystallographic direction. Atomic force microscopy (AFM) micrograph shows that IZO film has a typical columnar structure and a very smooth surface. The heterojunction parameters were evaluated from the current-voltage (I-V) characteristics carried out in the temperature range 80–300 K and capacitance-voltage (C-V) measurements. The ideality factor and barrier height of the heterojunction exhibited strong temperature dependence. The electrical measurements show that the n-IZO/PS/p-Si heterojunction has a Schottky electronic behavior where the depletion-layer is developed principally in the p-type silicon substrate. The tunneling mechanism via deep-level states was the main conduction process at low forward bias, while space-charge-limited current conduction dominated the carrier transport at higher bias. The I-V characteristics under illumination show that the p-n junction exhibits a photovoltaic behavior and is promising for photovoltaic application.

Keywords

Nanostructure ZnO:In Porous silicon Solar cell Sol-gel Sputtering 

References

  1. 1.
    L. El Mir, Z. Ben Ayadi, H. Rahmouni, J. El Ghoul, K. Djessas, H.J. von Bardeleben, Thin Solid Films 517, 6007 (2009)CrossRefGoogle Scholar
  2. 2.
    E. Budianu, M. Purica, E. Manea, E. Rusu, R. Gavrila, M. Danila, Sol. Energy Mater. Sol. Cells 72, 223 (2002)CrossRefGoogle Scholar
  3. 3.
    T. Soki, Hatanaka, D.C. Look, Appl. Phys. Lett. 76, 3257 (2000)CrossRefGoogle Scholar
  4. 4.
    S. Major, S. Kumar, M. Bhatnagar, K.L. Chapra, Appl. Phys. Lett. 49, 394 (1986)CrossRefGoogle Scholar
  5. 5.
    S. Im, B.J. Jim, S. Yi, J. Appl. Phys. 87, 4558 (2000)CrossRefGoogle Scholar
  6. 6.
    R. Chen, B. Ling, X.W. Sun, H.D. Sun, Adv. Mater. 23, 2128 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Newman, Phys. Status Solidi B 105, 605 (1981)CrossRefGoogle Scholar
  8. 8.
    M. Caglar, Y. Caglar, S. Ilican, Phys. Status Solidi C 4, 1337 (2007)CrossRefGoogle Scholar
  9. 9.
    I. Hamberg, C.G. Granvist, J. Appl. Phys. 60, R123 (1986)CrossRefGoogle Scholar
  10. 10.
    Y.S. Jung, J.Y. Seo, D.W. Lee, D.Y. Jeon, Thin Solid Films 446, 63 (2006)Google Scholar
  11. 11.
    P. Nunes, E. Fortunato, P. Tonello, F. Braz Frenandes, P. Vilarinho, R. Martins, Vacuum 64, 281 (2002)CrossRefGoogle Scholar
  12. 12.
    P. Petrou, R. Singh, D.E. Brodie, Appl. Phys. Lett. 35, 930 (1979)CrossRefGoogle Scholar
  13. 13.
    A.P. Roth, D.F. Williams, J. Appl. Phys. 52, 6685 (1981)CrossRefGoogle Scholar
  14. 14.
    X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875 (2003)CrossRefGoogle Scholar
  15. 15.
    P. Nunes, E. Fortunadeo, R. Martins, Thin Solid Films 383, 277 (2001)CrossRefGoogle Scholar
  16. 16.
    Y.F. Lu, H.Q. Ni, Z.H. Mai, Z.M. Ren, J. Appl. Phys. 88, 498 (2000)CrossRefGoogle Scholar
  17. 17.
    A.E. Jimenez-Gonzalez, A. Jose, R. Suarez-Parra, J. Cryst. Growth 192, 430 (1998)CrossRefGoogle Scholar
  18. 18.
    A.L. Armelao, F.M. Fabrizio, G.S. Gialanella, Z.F. Zordan, Thin Solid Films 394, 90 (2001)CrossRefGoogle Scholar
  19. 19.
    G. Aygun, I. Yildiz, J. Appl. Phys. 106, 014312 (2009)CrossRefGoogle Scholar
  20. 20.
    L. El Mir, A. Amlouk, C. Barthou, S. Alaya, Phys. B Condens. Matter 388, 412 (2007)CrossRefGoogle Scholar
  21. 21.
    L. El Mir, J. El Ghoul, S. Alaya, M. Ben Salem, C. Barthou, H.J. Von Bardeleben, Phys. B: Condens. Matter 403, 1770 (2008)CrossRefGoogle Scholar
  22. 22.
    L. El Mir, A. Amlouk, C. Barthou, J. Phys. Chem. Solids 67, 2395 (2006)CrossRefGoogle Scholar
  23. 23.
    L. El Mir, Z. Ben Ayadi, M. Saadoun, H.J. von Bardeleben, K. Djessas, A. Zeinert, Phys. Status Solidi A 204, 3266 (2007)CrossRefGoogle Scholar
  24. 24.
    L. El Mir, Z. Ben Ayadi, M. Saadoun, K. Djessas, H.J. von Bardeleben, S. Alaya, Appl. Surf. Sci. 254, 570 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Saadoun, B. Bessais, N. Mliki, M. Ferid, H. Ezzaouia, R. Bennaceur, Appl. Surf. Sci. 210, 240 (2003)CrossRefGoogle Scholar
  26. 26.
    M. Girtan, M. Socol, B. Pattier, M. Sylla, A. Stanculescu, Thin Solid Films 519, 573 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Saeki, H. Tabata, T. Kawai, Solid State Commun. 120, 439 (2001)CrossRefGoogle Scholar
  28. 28.
    H. Deng, J.J. Russell, R.N. Lamb, B. Jiang, Thin Solid Films 458, 43 (2004)CrossRefGoogle Scholar
  29. 29.
    K. Djessas, I. Bouchama, J.L. Gauffier, Z. Ben Ayadi, Thin Solid Films 555, 28 (2014)CrossRefGoogle Scholar
  30. 30.
    I.S. Jeong, J.H. Kim, S. Im, Appl. Phys. Lett. 83, 2946 (2003)CrossRefGoogle Scholar
  31. 31.
    Y.R. Ryu, T.S. Lee, J.H. Leem, H.W. White, Phys. Lett. 83, 4032 (2003)Google Scholar
  32. 32.
    R. Pietruszka, G. Luka, K. Kopalko, E. Zielony, P. Bieganski, E. Placzek-Popko, M. Godlewski, Mater. Sci. Semicond. Process. 25, 190 (2014)CrossRefGoogle Scholar
  33. 33.
    Z.N. Urgessa, S.R. Dobson, K. Talla, D.M. Murape, A. Venter, J.R. Botha, Physica B 439, 149 (2014)CrossRefGoogle Scholar
  34. 34.
    H. von Wenckstern, E.M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzner, V. Gottschalch, R. Pickenhain, M. Grundmann, Appl. Phys. Lett. 84, 79 (2004)CrossRefGoogle Scholar
  35. 35.
    F. Chaabouni, M. Abaab, B. Rezig, Superlattice. Microst. 39, 171 (2006)CrossRefGoogle Scholar
  36. 36.
    M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Solid State Electron. 45, 133 (2001)CrossRefGoogle Scholar
  37. 37.
    N.K. Reddy, Q. Ahsanulhaq, J.H. Kim, Y.B. Hahn, Appl. Phys. Lett. 92, 043127 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Dutta, D. Basak, Appl. Phys. Lett. 92, 212112 (2008)CrossRefGoogle Scholar
  39. 39.
    Y.S. Ocak, J. Alloys Compd. 513, 130 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE)Faculty of Sciences Gabes, Gabes UniversityGabesTunisia
  2. 2.Department of Physics, Faculty of ScienceUniversity of JeddahJeddahKingdom of Saudi Arabia
  3. 3.Equipe de Spectroscopie Raman, Département de PhysiqueFaculté des Sciences de TunisTunisTunisie
  4. 4.Laboratoire Procédés, Matériaux et Énergie Solaire (PROMES-CNRS)Université de Perpignan, Rambla de la thermodynamiquePerpignan CedexFrance
  5. 5.College of Sciences, Department of PhysicsAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhKingdom of Saudi Arabia

Personalised recommendations