Advertisement

Journal of Electroceramics

, Volume 34, Issue 2–3, pp 221–227 | Cite as

Facile preparation of a Nb2O5 blocking layer for dye-sensitized solar cells

  • Sung-Hwan Lim
  • Kwang-Won Park
  • Ming Hao Jin
  • Sungwoo Ahn
  • Jeemin Song
  • Jongin Hong
Article

Abstract

The introduction of a niobium oxide layer between fluorine-doped tin oxide (FTO) and TiO2 electrodes is known to enhance the power conversion efficiency (η) of dye-sensitized solar cells (DSSCs). Nb thin films were deposited on FTO glass substrates using RF magnetron sputtering. TiO2 pastes were then screen-printed onto the Nb thin films. The multilayered structures were annealed at 500 °C in a muffle furnace and assembled with Pt counter electrodes for DSSC performance evaluation. The Nb thin films were oxidized during the calcination process, producing a post-oxidized layer that increased the solar-cell efficiency by about 15 % and the photocurrent density by approximately 25 %.

Keywords

Nb2O5 Blocking layer Sputtering Dye-sensitized solar cells 

Notes

Acknowledgments

This research was supported by the Chung-Ang University Research Scholarship Grants in 2012, the Basic Science Research Program (2013-026989) through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea.

References

  1. 1.
    R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Petterson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  3. 3.
    B.E. Hardin, H.J. Snaith, M.D. McGehee, Nat. Photonics 6, 163 (2012)CrossRefGoogle Scholar
  4. 4.
    B.A. Gregg, Coord. Chem. Rev. 248, 1215 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Xia, S. Yanagida, Sol. Energy 85, 3143 (2011)CrossRefGoogle Scholar
  6. 6.
    P.J. Cameron, L.M. Peter, S. Hore, J. Phys. Chem. B 109, 930 (2005)CrossRefGoogle Scholar
  7. 7.
    P.J. Cameron, L.M. Peter, J. Phys. Chem. B 109, 7392 (2005)CrossRefGoogle Scholar
  8. 8.
    J.H. Yum, S. Nakade, D.Y. Kim, S. Yanagida, J. Phys. Chem. B 110, 3215 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Photochem. Photobiol. A 188, 120 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Xia, N. Masaki, K. Jiang, S. Yanagida, Chem. Commun. 138 (2007)Google Scholar
  11. 11.
    J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Phys. Chem. C 111, 8092 (2007)CrossRefGoogle Scholar
  12. 12.
    T.Y. Cho, K.W. Ko, S.G. Yoo, S.S. Sekhon, M.G. Kang, Y.S. Hong, C.H. Han, Curr. Appl. Phys. 13, 1391 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Agarwal, G.B. Reddy, J. Mater. Sci. Eng. 16, 21 (2005)Google Scholar
  14. 14.
    J. Hong, Y. Lee, G.A.T. Chansin, J.B. Edel, A.J. deMello, Nanotechnology 19, 165205 (2008). 8ppCrossRefGoogle Scholar
  15. 15.
    H.H. Afify, R.S. Momtaz, W.A. Badawy, S.A. Nasser, J. Mater. Sci. Eng. 2, 40 (1991)Google Scholar
  16. 16.
    F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119 (2004)CrossRefGoogle Scholar
  17. 17.
    K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater. 10, 3825 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sung-Hwan Lim
    • 1
  • Kwang-Won Park
    • 1
  • Ming Hao Jin
    • 1
  • Sungwoo Ahn
    • 1
  • Jeemin Song
    • 1
  • Jongin Hong
    • 1
  1. 1.Department of ChemistryChung-Ang UniversitySeoulSouth Korea

Personalised recommendations