Journal of Electroceramics

, Volume 34, Issue 2–3, pp 216–220 | Cite as

Effect of carbon nanotubes addition on properties of 0–3 pyroelectric ceramic/polymer composites

  • Yangyang Zhang
  • Jinping Zhang
  • Jingxia Gao
  • Hui Li
  • ErPing Wang
  • Xing Hu


0–3 pyroelectric ceramic/polymer composites were fabricated using (Pb[(Mn1/3 Nb2/3)1/2(Mn1/3Sb2/3)1/2]0.04(Zr0.05Ti0.95)0.96O3)(PZT) and Poly(vinylidene fluoride) (PVDF) by hot-pressing technology. The influences of carbon nanotubes (CNTs) on the volume conductivity, specific heat capacity, dielectric, piezoelectric, and pyroelectric properties were discussed. The results indicated that the CNTs acted as a conductive phase which is helpful to improve the conductivity of the composites and thereby enhance the pyroelectric properties. With the increasing CNTs content, the specific heat capacity of the composites decreased, while the dielectric constant, dielectric loss and volume conductivity all exhibit an increasing trend. As a result, the piezoelectric strain factor (d 33 ), pyroelectric coefficient (p) and figure of merit (F D ) are all significantly improved. And 0.9 wt% CNTs corresponds to the maximum d 33 , p and F D . It was concluded that CNTs-addition was an effective method to enhance the piezoelectric and pyroelectric performance of the composites.


Composites Dielectric properties Volume conductivity Specific heat capacity Pyroelectric properties 



This work was supported by the National Nature Science Foundation of China (61378076), the Project of Henan Province Science and technology (142102210136, 142300410282), the Program of Zhengzhou Science and Technology Bureau (121PPTGG359-3, 121PYFZX178, 20130679, 20130685), Foundation of Henan Educational Committee (13B430985, 13B140986). The authors also wish to thank the Analytical and Testing Center of Huazhong University of Science and Technology.


  1. 1.
    D. Zhou, K.H. Lam, Y. Chen, Q.H. Zhang, Y.C. Chiu, H.S. Luo, J.Y. Dai, H.L.W. Chan, Sens. Actuat. A- Phys. 182, 95 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Sun, P. Ngernchuklin, M. Vittadello, E.K. Akdogan, A. Safari, J. Electroceram. 24, 219 (2010)CrossRefGoogle Scholar
  3. 3.
    Y.J. Choi, M.J. Yoo, H.W. Kang, H.G. Lee, S.H. Han, S. Nahm, J. Electroceram. 30, 30 (2013)CrossRefGoogle Scholar
  4. 4.
    K.S. Lam, Y.W. Wong, L.S. Tai, Y.M. Poon, F.G. Shin, J. Appl. Phys. 96, 3896 (2004)CrossRefGoogle Scholar
  5. 5.
    A.K. Batra, M.D. Aggarwal, M.E. Edwards, A. Bhalla, Ferroelectrics 366, 84 (2008)CrossRefGoogle Scholar
  6. 6.
    R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  7. 7.
    M.T. Sebastian, H. Jantunen, Int. Appl. Ceram. Technol. 7, 415 (2010)Google Scholar
  8. 8.
    M.S. Jayalakshmy, J. Philip, Sensor. Actuat. A- Phys. 206, 121 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Dietze, J. Krause, C.H. Solterbeck, M. Es-Souni, J. Appl. Phys. 101, 054113 (2007)CrossRefGoogle Scholar
  10. 10.
    Q.Q. Zhang, W.L.H. Chan, Q.F. Zhou, C.L. Choy, Mater. Res. Innov. 2, 283 (1999)CrossRefGoogle Scholar
  11. 11.
    B. Charlot, S. Gauthier, A. Garraud, P. Combette, A. Giani, J. Mater. Sci. - Mater. El. 22, 1766 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Pecora, L. Maiolo, F. Maita, A. Minotti, Sens. Actuat. A- Phys. 185, 39 (2012)CrossRefGoogle Scholar
  13. 13.
    G.Z. Zhang, S.L. Jiang, Y.Y. Zhang, T.T. Xie, Curr. Appl. Phys. 9, 1434 (2009)CrossRefGoogle Scholar
  14. 14.
    B. Ploss, W.Y. Ng, H.L.W. Chan, B. Ploss, C.L. Choy, Compos. Sci. Technol. 61, 957 (2001)CrossRefGoogle Scholar
  15. 15.
    B. Ploss, F.G. Shin, H.L.W. Chan, IEEE T. Dielect. El. In. 7, 517 (2002)CrossRefGoogle Scholar
  16. 16.
    K.H. Lam, H.L.W. Chan, Compos. Sci. Technol. 65, 1107 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Olszowy, E. Markiewicz, C. Pawlaczyk, J. Kulek, E. Nogas-cwikiel, J. Electroceram. 23, 94 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Chaipanich, N. Jaitanong, R. Yimnirun, Ceram. Int. 37, 1181 (2011)CrossRefGoogle Scholar
  19. 19.
    S.F. Huang, X. Li, F.T. Liu, J. Chang, D.Y. Xu, X. Cheng, Curr. Appl. Phys. 9, 1191 (2009)CrossRefGoogle Scholar
  20. 20.
    H.Y. Gong, Z.J. Li, Y.J. Zhang, R.H. Fan, J. Eur. Ceram. Soc. 29, 2013 (2009)CrossRefGoogle Scholar
  21. 21.
    W.K. Sakamoto, P. Marin-Franch, D.K. Das-Gupta, Sens. Actuat. A- Phys. 100, 165 (2002)CrossRefGoogle Scholar
  22. 22.
    X.F. Liu, C.X. Xiong, H.J. Sun, L.J. Dongm, R. Li, Y. Liu, Mat. Sci. Eng. B-Solid 127, 261 (2006)CrossRefGoogle Scholar
  23. 23.
    T.W. Odom, J.L. Huang, P. Kim, C.M. Liber, Nature 391, 62 (1998)CrossRefGoogle Scholar
  24. 24.
    R. Haggenmueller, C. Guthy, J.R. Lukes, J.E. Fischer, K.I. Winey, Macromolecules 40, 2417 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000)CrossRefGoogle Scholar
  26. 26.
    N. Levi, R. Czerw, S. Xing, P. Lyer, D.L. Carroll, Nano Lett. 4, 1267 (2004)CrossRefGoogle Scholar
  27. 27.
    Y.K. Zeng, F. Yao, G.Z. Zhang, S.S. Liu, S.L. Jiang, Y. Yu, J.G. He, L. Zhang, J.Q. Yi, Ceram. Int. 39, 3709 (2013)CrossRefGoogle Scholar
  28. 28.
    Z. Ounaies, C. Park, K.E. Wise, E.J. Siochi, J.S. Harrison, Compos. Sci. Technol. 63, 1637 (2003)CrossRefGoogle Scholar
  29. 29.
    International Standard (ISO 11357–4), Plastics-Differential scanning calorimetry (DSC), Part 4: Ditermination of specific heat capacity, (2005)Google Scholar
  30. 30.
    A. Moisala, Q. Li, I.A. Kinloch, A.H. Windle, Compos. Sci. Technol. 66, 1285 (2006)CrossRefGoogle Scholar
  31. 31.
    F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Polymer 47, 2036 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Fu, Y. Yu, J.J. Xie, L.P. Wang, M.Y. Fan, S.L. Jiang, Y.K. Zeng, Appl. Phys. Lett. 94, 012904 (2009)CrossRefGoogle Scholar
  33. 33.
    H.Y. Gong, Y.J. Zhang, J. Quan, S.W. Che, Curr. Appl. Phys. 11, 653 (2011)CrossRefGoogle Scholar
  34. 34.
    X.C. Guan, Y.D. Zhang, H. Li, J.P. Ou, Sens. Actuat. A- Phys. 194, 228 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yangyang Zhang
    • 1
    • 2
  • Jinping Zhang
    • 1
  • Jingxia Gao
    • 1
  • Hui Li
    • 1
  • ErPing Wang
    • 1
  • Xing Hu
    • 2
  1. 1.Information Engineering InstituteHuanghe Science and Technology CollegeHeNanPeople’s Republic of China
  2. 2.College of Physical Science and EngineeringZhengzhou UniversityHeNanPeople’s Republic of China

Personalised recommendations