Skip to main content
Log in

Effect of carbon nanotubes addition on properties of 0–3 pyroelectric ceramic/polymer composites

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

0–3 pyroelectric ceramic/polymer composites were fabricated using (Pb[(Mn1/3 Nb2/3)1/2(Mn1/3Sb2/3)1/2]0.04(Zr0.05Ti0.95)0.96O3)(PZT) and Poly(vinylidene fluoride) (PVDF) by hot-pressing technology. The influences of carbon nanotubes (CNTs) on the volume conductivity, specific heat capacity, dielectric, piezoelectric, and pyroelectric properties were discussed. The results indicated that the CNTs acted as a conductive phase which is helpful to improve the conductivity of the composites and thereby enhance the pyroelectric properties. With the increasing CNTs content, the specific heat capacity of the composites decreased, while the dielectric constant, dielectric loss and volume conductivity all exhibit an increasing trend. As a result, the piezoelectric strain factor (d 33 ), pyroelectric coefficient (p) and figure of merit (F D ) are all significantly improved. And 0.9 wt% CNTs corresponds to the maximum d 33 , p and F D . It was concluded that CNTs-addition was an effective method to enhance the piezoelectric and pyroelectric performance of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Zhou, K.H. Lam, Y. Chen, Q.H. Zhang, Y.C. Chiu, H.S. Luo, J.Y. Dai, H.L.W. Chan, Sens. Actuat. A- Phys. 182, 95 (2012)

    Article  Google Scholar 

  2. J. Sun, P. Ngernchuklin, M. Vittadello, E.K. Akdogan, A. Safari, J. Electroceram. 24, 219 (2010)

    Article  Google Scholar 

  3. Y.J. Choi, M.J. Yoo, H.W. Kang, H.G. Lee, S.H. Han, S. Nahm, J. Electroceram. 30, 30 (2013)

    Article  Google Scholar 

  4. K.S. Lam, Y.W. Wong, L.S. Tai, Y.M. Poon, F.G. Shin, J. Appl. Phys. 96, 3896 (2004)

    Article  Google Scholar 

  5. A.K. Batra, M.D. Aggarwal, M.E. Edwards, A. Bhalla, Ferroelectrics 366, 84 (2008)

    Article  Google Scholar 

  6. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)

    Article  Google Scholar 

  7. M.T. Sebastian, H. Jantunen, Int. Appl. Ceram. Technol. 7, 415 (2010)

    Google Scholar 

  8. M.S. Jayalakshmy, J. Philip, Sensor. Actuat. A- Phys. 206, 121 (2014)

    Article  Google Scholar 

  9. M. Dietze, J. Krause, C.H. Solterbeck, M. Es-Souni, J. Appl. Phys. 101, 054113 (2007)

    Article  Google Scholar 

  10. Q.Q. Zhang, W.L.H. Chan, Q.F. Zhou, C.L. Choy, Mater. Res. Innov. 2, 283 (1999)

    Article  Google Scholar 

  11. B. Charlot, S. Gauthier, A. Garraud, P. Combette, A. Giani, J. Mater. Sci. - Mater. El. 22, 1766 (2011)

    Article  Google Scholar 

  12. A. Pecora, L. Maiolo, F. Maita, A. Minotti, Sens. Actuat. A- Phys. 185, 39 (2012)

    Article  Google Scholar 

  13. G.Z. Zhang, S.L. Jiang, Y.Y. Zhang, T.T. Xie, Curr. Appl. Phys. 9, 1434 (2009)

    Article  Google Scholar 

  14. B. Ploss, W.Y. Ng, H.L.W. Chan, B. Ploss, C.L. Choy, Compos. Sci. Technol. 61, 957 (2001)

    Article  Google Scholar 

  15. B. Ploss, F.G. Shin, H.L.W. Chan, IEEE T. Dielect. El. In. 7, 517 (2002)

    Article  Google Scholar 

  16. K.H. Lam, H.L.W. Chan, Compos. Sci. Technol. 65, 1107 (2005)

    Article  Google Scholar 

  17. M. Olszowy, E. Markiewicz, C. Pawlaczyk, J. Kulek, E. Nogas-cwikiel, J. Electroceram. 23, 94 (2009)

    Article  Google Scholar 

  18. A. Chaipanich, N. Jaitanong, R. Yimnirun, Ceram. Int. 37, 1181 (2011)

    Article  Google Scholar 

  19. S.F. Huang, X. Li, F.T. Liu, J. Chang, D.Y. Xu, X. Cheng, Curr. Appl. Phys. 9, 1191 (2009)

    Article  Google Scholar 

  20. H.Y. Gong, Z.J. Li, Y.J. Zhang, R.H. Fan, J. Eur. Ceram. Soc. 29, 2013 (2009)

    Article  Google Scholar 

  21. W.K. Sakamoto, P. Marin-Franch, D.K. Das-Gupta, Sens. Actuat. A- Phys. 100, 165 (2002)

    Article  Google Scholar 

  22. X.F. Liu, C.X. Xiong, H.J. Sun, L.J. Dongm, R. Li, Y. Liu, Mat. Sci. Eng. B-Solid 127, 261 (2006)

    Article  Google Scholar 

  23. T.W. Odom, J.L. Huang, P. Kim, C.M. Liber, Nature 391, 62 (1998)

    Article  Google Scholar 

  24. R. Haggenmueller, C. Guthy, J.R. Lukes, J.E. Fischer, K.I. Winey, Macromolecules 40, 2417 (2007)

    Article  Google Scholar 

  25. S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000)

    Article  Google Scholar 

  26. N. Levi, R. Czerw, S. Xing, P. Lyer, D.L. Carroll, Nano Lett. 4, 1267 (2004)

    Article  Google Scholar 

  27. Y.K. Zeng, F. Yao, G.Z. Zhang, S.S. Liu, S.L. Jiang, Y. Yu, J.G. He, L. Zhang, J.Q. Yi, Ceram. Int. 39, 3709 (2013)

    Article  Google Scholar 

  28. Z. Ounaies, C. Park, K.E. Wise, E.J. Siochi, J.S. Harrison, Compos. Sci. Technol. 63, 1637 (2003)

    Article  Google Scholar 

  29. International Standard (ISO 11357–4), Plastics-Differential scanning calorimetry (DSC), Part 4: Ditermination of specific heat capacity, (2005)

  30. A. Moisala, Q. Li, I.A. Kinloch, A.H. Windle, Compos. Sci. Technol. 66, 1285 (2006)

    Article  Google Scholar 

  31. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Polymer 47, 2036 (2006)

    Article  Google Scholar 

  32. M. Fu, Y. Yu, J.J. Xie, L.P. Wang, M.Y. Fan, S.L. Jiang, Y.K. Zeng, Appl. Phys. Lett. 94, 012904 (2009)

    Article  Google Scholar 

  33. H.Y. Gong, Y.J. Zhang, J. Quan, S.W. Che, Curr. Appl. Phys. 11, 653 (2011)

    Article  Google Scholar 

  34. X.C. Guan, Y.D. Zhang, H. Li, J.P. Ou, Sens. Actuat. A- Phys. 194, 228 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61378076), the Project of Henan Province Science and technology (142102210136, 142300410282), the Program of Zhengzhou Science and Technology Bureau (121PPTGG359-3, 121PYFZX178, 20130679, 20130685), Foundation of Henan Educational Committee (13B430985, 13B140986). The authors also wish to thank the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, J., Gao, J. et al. Effect of carbon nanotubes addition on properties of 0–3 pyroelectric ceramic/polymer composites. J Electroceram 34, 216–220 (2015). https://doi.org/10.1007/s10832-014-9976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9976-3

Keywords

Navigation