Journal of Electroceramics

, Volume 34, Issue 2–3, pp 207–215 | Cite as

Study on improving current generating time of piezoelectric energy harvesting system

  • Daniel Song
  • Min Sik Woo
  • Jung Hwan Ahn
  • Seong Kwang Hong
  • Se Bin Kim
  • Tae Hyun Sung


This study combined a ceramic, metal alloy, and polymer in a piezoelectric energy harvesting system. The proper container film for curing the urethane rubber was determined to be a Si-coated polyester film. Furthermore, a technique was developed to embed a piezoelectric energy system in urethane rubber (soft and hard); the resulting effects on the output voltage generation of this system were experimentally determined. Comparing the uncoated and hard urethane rubber-coated systems, the latter system improved the energy generation time by a factor of 50 by restricting the recovery time of the metal alloy and storing applied mechanical energy in urethane rubber, providing more time for the piezoelectric ceramic to generate output current. From the LED lighting test results, the urethane rubber coating increased the usable voltage generating time from 0.05 s to 2.5 s. The improved generating time is useful for piezoelectric energy harvesting systems with irregular ambient energy sources.


Piezoelectric energy harvesting Urethane rubber Electrical current 


  1. 1.
    S. Shinoda, T. Tai, H. Itoh, T. Sugou, H. Ichioka, S. Kimura, and Y. Nishioka: Japanese Journal of Applied Physics 49, 04DL21 (2010)Google Scholar
  2. 2.
    M. S. Kim, S. C. Lee, S. W. Kim, S. J. Jeong, I. S. Kim, and J. Song: Japanese Journal of Applied Physics 52, 10MB25 (2013)Google Scholar
  3. 3.
    N. E. duToit, B. L. Wardle, and S. G. Kim: Integrated Ferroelectrics 71, 121 (2005)Google Scholar
  4. 4.
    S. Saadon and O. Sidek: Energy Conversion and Management 52, 500 (2011)Google Scholar
  5. 5.
    L. Gu: Microelectronics Journal 42, 277 (2011)Google Scholar
  6. 6.
    K. A. Cook-Chennault, N. Thambi, and A. M. Sastry: Smart Mater. Struct. 17, 043001 (2008)Google Scholar
  7. 7.
    N. R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby, N. M. White and J. Ding:Sensors and Actuators A 132, 311 (2006)Google Scholar
  8. 8.
    I. G. Mina, H. Kim, I. Kim, S.K. Park, K. Choi, T. N. Jackson, R. L. Tutwiler and S. T. McKinstry:IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 54, 2422 (2007)Google Scholar
  9. 9.
    D. Choi, K.Y. Lee, K.H. Lee, E.S. Kim, T.S. Kim, S.Y. Lee, S.W. Kim, J.Y. Choi, J.M. Kim, Nanotechnology 21, 405503 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Lee, C.Y. Chen, S. Wang, W.N. Cha, Y.J. Park, J.M. Kim, L.J. Chou, Z.L. Wang, Adv Mater 24, 1759 (2012)CrossRefGoogle Scholar
  11. 11.
    H. J. Jung, D. Song, S. K. Hong, Y. Song, and T. H. Sung: Jpn. J. Appl. Phys. 52 (2013) 10 MB03.Google Scholar
  12. 12.
    M. Umeda, K. Nakamura, S. Ueha, Jpn J Appl Phys 35, 3267 (1996)CrossRefGoogle Scholar
  13. 13.
    M. C. Chure, L. Wu, K. K. Wu, C. C. Tung, J. S. Lin, and W. C. Ma: Ceramics international online (2013)Google Scholar
  14. 14.
    M. Renaud, P. Fiorini, C. Hoof, Smart Mater Struct 16, 1125 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Ji, F. Kong, L. He, Q. Guan, Z. Feng, Jpn J Appl Phys 49, 050204 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Priya, C.T. Chen, D. Fye, J. Zahnd, Jpn J Appl Phys 44, L104 (2005)CrossRefGoogle Scholar
  17. 17.
    J.G. Rocha, L.M. Goncalves, P.F. Rocha, M.P. Silva, S. Lanceros-Mendez, IEEE Trans on Industrial Electron 57, 813 (2010)CrossRefGoogle Scholar
  18. 18.
    M.A. Karami, D.J. Inman, Appl Phys Lett 100, 042901 (2012)CrossRefGoogle Scholar
  19. 19.
    D. Song, H. Jang, S.B. Kim, C.H. Yang, M.S. Woo, S.K. Song, J. Lee, T.H. Sung, J Electroceram 31, 1 (2013)CrossRefGoogle Scholar
  20. 20.
    D. Song, H. Jang, S.B. Kim, T.H. Sung, J Electroceram 31, 35 (2013)CrossRefGoogle Scholar
  21. 21.
    D. Song, C.H. Yang, S.K. Hong, S.B. Kim, M.S. Woo, T.H. Sung, Ferroelectrics 449, 11 (2013)CrossRefGoogle Scholar
  22. 22.
    H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, H.F. Hormann, Jpn J Appl Phys 43, 6178 (2004)CrossRefGoogle Scholar
  23. 23.
    Z. Cao, J. Zhang, and H. Kuwano: Jpn. J. Appl. Phys. 50, 09ND15 (2011).Google Scholar
  24. 24.
    T. Ogawa, R. Sugisawa, Y. Sakurada, H. Aoshima, M. Hikida, and H. Akaishi: Jpn. J. Appl. Phys. 52, 09KD14 (2013).Google Scholar
  25. 25.
    C. Li, D. Hong, K.H. Kwon, J. Jeong, Jpn J Appl Phys 52, 050202 (2013)CrossRefGoogle Scholar
  26. 26.
    H. A. Sodano, D. J. Inman, and G. Park: Journal of Intelligent Material Systems and Structures. 16, 799 (2005)Google Scholar
  27. 27.
    V. Bedekar, J. Oliver, and S. Priya: IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency control 57, 1513(2010)Google Scholar
  28. 28.
    H.A. Sodano, G. Park, D.J. Leo, D.J. Inman, Smart Mater Struct 5050, 101 (2003)Google Scholar
  29. 29.
    S. Roundy, P.K. Wright, Smart Mater Struct 13, 1131 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Umeda, K. Nakamura, S. Ueha, Jpn J Appl Phys 36, 3146 (1997)CrossRefGoogle Scholar
  31. 30.
    M.J. Guan, W.H. Liao, Ferroelectrics 386, 77 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Daniel Song
    • 1
  • Min Sik Woo
    • 1
  • Jung Hwan Ahn
    • 1
  • Seong Kwang Hong
    • 1
  • Se Bin Kim
    • 1
  • Tae Hyun Sung
    • 1
  1. 1.Department of Electrical EngineeringHanyang UniversitySeoulSouth Korea

Personalised recommendations