Journal of Electroceramics

, Volume 34, Issue 1, pp 91–99 | Cite as

Free standing yttria-doped zirconia membranes: Geometrical effects on stability



Professor Arthur Nowick made seminal contributions to the areas of ionic conduction mechanisms in crystalline and disordered systems. An area of emerging interest in the solid state ionics community is investigating conduction in the mesoscopic regime. With free standing membranes, one can probe low-dimensional effects such as confinement without interference from substrates. Membranes have potential relevance to solid state devices that benefit from reduced ionic resistance, for example sensors and solid oxide fuel cells. Membranes with varying lateral dimensions have been previously reported in literature; however, understanding of stress interactions in suspended oxide structures is in early stages. In this paper, we demonstrate self-supported, i.e. in the absence of any additional mechanical support layers, square and circular membranes of 100 nm thick yttria-doped zirconia (YDZ) having side length and diameters of 0.15–2 mm. The buckled membrane shape is intimately linked to the fabrication processes arising from dry versus wet etching protocols. Geometrical considerations associated with buckling and stability are discussed. Thin film solid oxide fuel cells utilizing circular membranes are fabricated, exhibiting open circuit voltages between 0.8 and 1 V that correlate with membrane size and exhibit a total power output on the order of several mW. These results contribute to advancing experimental techniques to fabricate free standing oxide membranes for fundamental and applied studies pertaining to ionic and electronic conduction.


Yttria doped zirconia Ultrathin membrane Thin film solid oxide fuel cell Geometric stability Thin film stress 



S.X. acknowledges Harvard School of Engineering and Applied Science (SEAS) for financial support. K.K. was supported by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.


  1. 1.
    D.Y. Wang, A.S. Nowick, J. Phys. Chem. Solids 44, 639 (1983)CrossRefGoogle Scholar
  2. 2.
    D.Y. Wang, D.S. Park, J. Griffith, A.S. Nowick, Solid State Ionics 2, 95 (1981)CrossRefGoogle Scholar
  3. 3.
    H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 122, 255 (1975)CrossRefGoogle Scholar
  4. 4.
    A.S. Nowick, B.S. Lim, Phys. Rev. B 63, 184115 (2001)CrossRefGoogle Scholar
  5. 5.
    L.B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003)Google Scholar
  6. 6.
    J.A. Thornton, D.W. Hoffman, Thin Solid Films 171, 5 (1989)CrossRefGoogle Scholar
  7. 7.
    C.D. Baertsch, K.F. Jensen, J.L. Hertz, H.L. Tuller, S.T. Vengallatore, S.M. Spearing, M.A. Schmidt, J. Mater. Res. 19, 2604 (2004)CrossRefGoogle Scholar
  8. 8.
    D.J. Quinn, B. Wardle, S.M. Spearing, J. Mater. Res. 23, 609 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Kerman, Q. Van Overmeere, M. Karpelson, R.J. Wood, S. Ramanathan, ACS Nano 7, 10895 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Kerman, T. Tallinen, S. Ramanathan, L. Mahadevan, J. Power Sources 222, 359 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Jiang, J. Hertz, J. Electroceram. 32, 37 (2014). doi: 10.1007/s10832-013-9857-1
  12. 12.
    H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Solid State Ionics 176, 613 (2005)CrossRefGoogle Scholar
  13. 13.
    Y. Okada, Y. Tokumaru, J. Appl. Phys. 56, 314 (1984)CrossRefGoogle Scholar
  14. 14.
    S. Giraud, J. Canel, J. Eur. Ceram. Soc. 28, 77 (2008)CrossRefGoogle Scholar
  15. 15.
    N. Yamamoto, D.J. Quinn, N. Wicks, J.L. Hertz, J. Cui, H.L. Tuller, B.L. Wardle, J. Micromech. Microeng. 20, 035027 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Safa, T. Hocker, M. Prestat, A. Evans, J. Power Sources 250, 332 (2014)CrossRefGoogle Scholar
  17. 17.
    L.L.D. Landau, E.M. Lifshi, A.M. Kosevitch, L.P. Pitaevskiĭ, Theory of Elasticity 7 (Butterworth-Heinemann Limited, 1986)Google Scholar
  18. 18.
    M. Tsuchiya, B.-K. Lai, S. Ramanathan, Nat. Nanotechnol 6, 282 (2011)CrossRefGoogle Scholar
  19. 19.
    S. P-C, F.B. Prinz, Electrochem. Commun. 16, 77 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Kerman, S. Ramanathan, J. Mater. Res. 29, 320 (2014). doi: 10.1557/jmr.2013.301
  21. 21.
    U.P. Muecke, D. Beckel, A. Bernard, A. Bieberle-Hütter, S. Graf, A. Infortuna, P. Müller, J.L.M. Rupp, J. Schneider, L.J. Gauckler, Adv. Funct. Mater. 18, 3158 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Yan, S.C. Sandu, J. Conde, P. Muralt, J. Power Sources 206, 84 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Tölke, A. Bieberle-Hütter, A. Evans, J.L.M. Rupp, L.J. Gauckler, J. Eur. Ceram. Soc. 32, 3229 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Rey-Mermet, P. Muralt, Solid State Ionics 179, 1497 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Bieberle-Hütter, P. Reinhard, J.L.M. Rupp, L.J. Gauckler, J. Power Sources 196, 6070 (2011)CrossRefGoogle Scholar
  26. 26.
    A.C. Johnson, B.-K. Lai, H. Xiong, S. Ramanathan, J. Power Sources 186, 252 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Tang, K. Stanley, J. Wu, D. Ghosh, J. Zhang, J. Micromech. Microeng. 15, S185 (2005)CrossRefGoogle Scholar
  28. 28.
    R. Danzer, J. Eur. Ceram. Soc. 10, 461 (1992)CrossRefGoogle Scholar
  29. 29.
    A. Evans, M. Prestat, R. Tölke, M.V.F. Schlupp, L.J. Gauckler, Y. Safa, T. Hocker, J. Courbat, D. Briand, N.F. de Rooij, D. Courty, Fuel Cells 12, 614 (2012)CrossRefGoogle Scholar
  30. 30.
    I. Garbayo, A. Tarancón, J. Santiso, F. Peiró, E. Alarcón-Lladó, A. Cavallaro, I. Gràcia, C. Cané, N. Sabaté, Solid State Ionics 181, 322 (2010)CrossRefGoogle Scholar
  31. 31.
    K.V.L.V. Narayanachari, S. Raghavan, J. Appl. Phys. 112, 074910 (2012)CrossRefGoogle Scholar
  32. 32.
    K. Kerman, B.-K. Lai, S. Ramanathan, J. Power Sources 202, 120 (2012)CrossRefGoogle Scholar
  33. 33.
    K. Torsten, P. Oliver, J. Micromech. Microeng. 12, 475 (2002)CrossRefGoogle Scholar
  34. 34.
    A.C. Johnson, A. Baclig, D.V. Harburg, B.-K. Lai, S. Ramanathan, J. Power Sources 195, 1149 (2010)CrossRefGoogle Scholar
  35. 35.
    I. Langmuir, Phys. Rev. 2, 450 (1913)CrossRefGoogle Scholar
  36. 36.
    X. Guo, Y. Ding, J. Electrochem. Soc. 151, J1 (2004)CrossRefGoogle Scholar
  37. 37.
    O.J. Durá, M.A. López de la Torre, L. Vázquez, J. Chaboy, R. Boada, A. Rivera-Calzada, J. Santamaria, C. Leon, Phys. Rev. B 81, 184301 (2010)CrossRefGoogle Scholar
  38. 38.
    S. Rey-Mermet, Y. Yan, C. Sandu, G. Deng, P. Muralt, Thin Solid Films 518, 4743 (2010)CrossRefGoogle Scholar
  39. 39.
    C.-W. Kwon, J.-W. Son, J.-H. Lee, H.-M. Kim, H.-W. Lee, K.-B. Kim, Adv. Funct. Mater. 21, 1154 (2011)CrossRefGoogle Scholar
  40. 40.
    K. Kerman, B.-K. Lai, S. Ramanathan, J. Power Sources 196, 2608 (2011)CrossRefGoogle Scholar
  41. 41.
    I. Garbayo, V. Esposito, S. Sanna, A. Morata, D. Pla, L. Fonseca, N. Sabaté, A. Tarancón, J. Power Sources 248, 1042 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kian Kerman
    • 1
  • Siyabulela Xuza
    • 1
  • Shriram Ramanathan
    • 1
  1. 1.Harvard School of Engineering and Applied SciencesCambridgeUSA

Personalised recommendations