Skip to main content
Log in

Free standing yttria-doped zirconia membranes: Geometrical effects on stability

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Professor Arthur Nowick made seminal contributions to the areas of ionic conduction mechanisms in crystalline and disordered systems. An area of emerging interest in the solid state ionics community is investigating conduction in the mesoscopic regime. With free standing membranes, one can probe low-dimensional effects such as confinement without interference from substrates. Membranes have potential relevance to solid state devices that benefit from reduced ionic resistance, for example sensors and solid oxide fuel cells. Membranes with varying lateral dimensions have been previously reported in literature; however, understanding of stress interactions in suspended oxide structures is in early stages. In this paper, we demonstrate self-supported, i.e. in the absence of any additional mechanical support layers, square and circular membranes of 100 nm thick yttria-doped zirconia (YDZ) having side length and diameters of 0.15–2 mm. The buckled membrane shape is intimately linked to the fabrication processes arising from dry versus wet etching protocols. Geometrical considerations associated with buckling and stability are discussed. Thin film solid oxide fuel cells utilizing circular membranes are fabricated, exhibiting open circuit voltages between 0.8 and 1 V that correlate with membrane size and exhibit a total power output on the order of several mW. These results contribute to advancing experimental techniques to fabricate free standing oxide membranes for fundamental and applied studies pertaining to ionic and electronic conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.Y. Wang, A.S. Nowick, J. Phys. Chem. Solids 44, 639 (1983)

    Article  Google Scholar 

  2. D.Y. Wang, D.S. Park, J. Griffith, A.S. Nowick, Solid State Ionics 2, 95 (1981)

    Article  Google Scholar 

  3. H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 122, 255 (1975)

    Article  Google Scholar 

  4. A.S. Nowick, B.S. Lim, Phys. Rev. B 63, 184115 (2001)

    Article  Google Scholar 

  5. L.B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  6. J.A. Thornton, D.W. Hoffman, Thin Solid Films 171, 5 (1989)

    Article  Google Scholar 

  7. C.D. Baertsch, K.F. Jensen, J.L. Hertz, H.L. Tuller, S.T. Vengallatore, S.M. Spearing, M.A. Schmidt, J. Mater. Res. 19, 2604 (2004)

    Article  Google Scholar 

  8. D.J. Quinn, B. Wardle, S.M. Spearing, J. Mater. Res. 23, 609 (2008)

    Article  Google Scholar 

  9. K. Kerman, Q. Van Overmeere, M. Karpelson, R.J. Wood, S. Ramanathan, ACS Nano 7, 10895 (2013)

    Article  Google Scholar 

  10. K. Kerman, T. Tallinen, S. Ramanathan, L. Mahadevan, J. Power Sources 222, 359 (2013)

    Article  Google Scholar 

  11. J. Jiang, J. Hertz, J. Electroceram. 32, 37 (2014). doi:10.1007/s10832-013-9857-1

  12. H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Solid State Ionics 176, 613 (2005)

    Article  Google Scholar 

  13. Y. Okada, Y. Tokumaru, J. Appl. Phys. 56, 314 (1984)

    Article  Google Scholar 

  14. S. Giraud, J. Canel, J. Eur. Ceram. Soc. 28, 77 (2008)

    Article  Google Scholar 

  15. N. Yamamoto, D.J. Quinn, N. Wicks, J.L. Hertz, J. Cui, H.L. Tuller, B.L. Wardle, J. Micromech. Microeng. 20, 035027 (2010)

    Article  Google Scholar 

  16. Y. Safa, T. Hocker, M. Prestat, A. Evans, J. Power Sources 250, 332 (2014)

    Article  Google Scholar 

  17. L.L.D. Landau, E.M. Lifshi, A.M. Kosevitch, L.P. Pitaevskiĭ, Theory of Elasticity 7 (Butterworth-Heinemann Limited, 1986)

  18. M. Tsuchiya, B.-K. Lai, S. Ramanathan, Nat. Nanotechnol 6, 282 (2011)

    Article  Google Scholar 

  19. S. P-C, F.B. Prinz, Electrochem. Commun. 16, 77 (2012)

    Article  Google Scholar 

  20. K. Kerman, S. Ramanathan, J. Mater. Res. 29, 320 (2014). doi:10.1557/jmr.2013.301

  21. U.P. Muecke, D. Beckel, A. Bernard, A. Bieberle-Hütter, S. Graf, A. Infortuna, P. Müller, J.L.M. Rupp, J. Schneider, L.J. Gauckler, Adv. Funct. Mater. 18, 3158 (2008)

    Article  Google Scholar 

  22. Y. Yan, S.C. Sandu, J. Conde, P. Muralt, J. Power Sources 206, 84 (2012)

    Article  Google Scholar 

  23. R. Tölke, A. Bieberle-Hütter, A. Evans, J.L.M. Rupp, L.J. Gauckler, J. Eur. Ceram. Soc. 32, 3229 (2012)

    Article  Google Scholar 

  24. S. Rey-Mermet, P. Muralt, Solid State Ionics 179, 1497 (2008)

    Article  Google Scholar 

  25. A. Bieberle-Hütter, P. Reinhard, J.L.M. Rupp, L.J. Gauckler, J. Power Sources 196, 6070 (2011)

    Article  Google Scholar 

  26. A.C. Johnson, B.-K. Lai, H. Xiong, S. Ramanathan, J. Power Sources 186, 252 (2009)

    Article  Google Scholar 

  27. Y. Tang, K. Stanley, J. Wu, D. Ghosh, J. Zhang, J. Micromech. Microeng. 15, S185 (2005)

    Article  Google Scholar 

  28. R. Danzer, J. Eur. Ceram. Soc. 10, 461 (1992)

    Article  Google Scholar 

  29. A. Evans, M. Prestat, R. Tölke, M.V.F. Schlupp, L.J. Gauckler, Y. Safa, T. Hocker, J. Courbat, D. Briand, N.F. de Rooij, D. Courty, Fuel Cells 12, 614 (2012)

    Article  Google Scholar 

  30. I. Garbayo, A. Tarancón, J. Santiso, F. Peiró, E. Alarcón-Lladó, A. Cavallaro, I. Gràcia, C. Cané, N. Sabaté, Solid State Ionics 181, 322 (2010)

    Article  Google Scholar 

  31. K.V.L.V. Narayanachari, S. Raghavan, J. Appl. Phys. 112, 074910 (2012)

    Article  Google Scholar 

  32. K. Kerman, B.-K. Lai, S. Ramanathan, J. Power Sources 202, 120 (2012)

    Article  Google Scholar 

  33. K. Torsten, P. Oliver, J. Micromech. Microeng. 12, 475 (2002)

    Article  Google Scholar 

  34. A.C. Johnson, A. Baclig, D.V. Harburg, B.-K. Lai, S. Ramanathan, J. Power Sources 195, 1149 (2010)

    Article  Google Scholar 

  35. I. Langmuir, Phys. Rev. 2, 450 (1913)

    Article  Google Scholar 

  36. X. Guo, Y. Ding, J. Electrochem. Soc. 151, J1 (2004)

    Article  Google Scholar 

  37. O.J. Durá, M.A. López de la Torre, L. Vázquez, J. Chaboy, R. Boada, A. Rivera-Calzada, J. Santamaria, C. Leon, Phys. Rev. B 81, 184301 (2010)

    Article  Google Scholar 

  38. S. Rey-Mermet, Y. Yan, C. Sandu, G. Deng, P. Muralt, Thin Solid Films 518, 4743 (2010)

    Article  Google Scholar 

  39. C.-W. Kwon, J.-W. Son, J.-H. Lee, H.-M. Kim, H.-W. Lee, K.-B. Kim, Adv. Funct. Mater. 21, 1154 (2011)

    Article  Google Scholar 

  40. K. Kerman, B.-K. Lai, S. Ramanathan, J. Power Sources 196, 2608 (2011)

    Article  Google Scholar 

  41. I. Garbayo, V. Esposito, S. Sanna, A. Morata, D. Pla, L. Fonseca, N. Sabaté, A. Tarancón, J. Power Sources 248, 1042 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

S.X. acknowledges Harvard School of Engineering and Applied Science (SEAS) for financial support. K.K. was supported by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kian Kerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerman, K., Xuza, S. & Ramanathan, S. Free standing yttria-doped zirconia membranes: Geometrical effects on stability. J Electroceram 34, 91–99 (2015). https://doi.org/10.1007/s10832-014-9917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9917-1

Keywords

Navigation