Advertisement

Journal of Electroceramics

, Volume 32, Issue 4, pp 332–338 | Cite as

Structure and dielectric property of Zr-doped (Na0.47Bi0.46Ba0.06K0.01)(Nb0.02Ti0.98)O3 lead-free ceramics

  • Jian Wang
  • Xiao-ming Chen
  • Xu-mei Zhao
  • Xiao-xia Liang
  • Xin Liu
  • Peng Liu
Article

Abstract

(Na0.47Bi0.46Ba0.06K0.01)(Nb0.02Ti0.98-xZrx)O3 lead-free ceramics (BNBKT-xZr, x = 0, 0.01, 0.02, 0.04) were synthesized via conventional solid state reaction method. Crystallite structure of the ceramics was studied using X-ray diffraction. The rhombohedral phase and tetragonal phase coexist in the BNBKT-xZr ceramics. The doping of Zr4+ into BNBKT lattice increases the percentage of the tetragonal phase. The size and shape of grains in the ceramics were affected by the doping of Zr4+ ions. For all the unpoled ceramics, two dielectric anomalies are observed in the dielectric constant-temperature curves. The maximum values of dielectric constant and corresponding temperatures change with the variation of Zr4+ amount. The doping of Zr4+ ions causes a decrease in the ferroelectric properties.

Keywords

Lead-free ceramic Dielectric properties Ferroelectricity Microstructure 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51372147, 11004127), Shaanxi Province Science and Technology Foundation (No. 2012KJXX-30), Fundamental Research Funds for the Central Universities (No. GK201305006, GK201401003), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120202110004), Innovation Funds of Graduate Programs, Shaanxi Normal University (Grant no. 2013CXS009) and National University Student Innovation Program (No. 201310718033).

References

  1. 1.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  2. 2.
    M. Cernea, E. Andronescu, R. Radu, F. Fochi, J. Alloys Compd. 490, 690 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006)CrossRefGoogle Scholar
  4. 4.
    X.M. Chen, Y.W. Liao, H.P. Wang, L.J. Mao, J. Alloys Compd. 493, 368 (2010)CrossRefGoogle Scholar
  5. 5.
    S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, Adv. Mater. 21, 4716 (2009)Google Scholar
  6. 6.
    F. Gao, X.L. Dong, C.L. Mao, F. Cao, G.S. Wang, J. Am. Ceram. Soc. 94, 4162 (2011)CrossRefGoogle Scholar
  7. 7.
    S.S. Gotthard, E.C. Ronald, Phys. Rev. B 59, 12771 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Chen, J.Y. Li, L.L. Fan, N. Zou, P.F. Ji, J. Appl. Phys. 112, 074101 (2012)CrossRefGoogle Scholar
  9. 9.
    F. Zhou, L. Wu, N.M. Liu, Y.C. Teng, Y.X. Li, J. Alloys Compd. 512, 52 (2012)CrossRefGoogle Scholar
  10. 10.
    P. Jaiban, A. Rachakom, S. Jiansirisomboon, Nanoscale Res. Lett. 7, 45 (2012)CrossRefGoogle Scholar
  11. 11.
    L.E. Cross, Mater. Chem. Phys. 43, 108 (1996)CrossRefGoogle Scholar
  12. 12.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  13. 13.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)CrossRefGoogle Scholar
  14. 14.
    G. Picht, J. Töpfer, E. Hennig, J. Eur. Ceram. Soc. 30, 3445 (2010)CrossRefGoogle Scholar
  15. 15.
    H.Y. Ma, X.M. Chen, J. Wang, K.T. Huo, H.L. Lian, P. Liu, Ceram. Int. 39, 3721 (2013)CrossRefGoogle Scholar
  16. 16.
    X.M. Chen, H.Y. Ma, W.Y. Pan, M. Pang, P. Liu, J.P. Zhou, Mater. Chem. Phys. 132, 368 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Ma, X. Tan, Solid State Commun. 150, 1497 (2010)CrossRefGoogle Scholar
  18. 18.
    H.S. Nalwa, Handbook of low and high dielectric constant materials and their applications, vol. 1 (Academic, London, 1999)Google Scholar
  19. 19.
    C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)CrossRefGoogle Scholar
  20. 20.
    A. Ullah, C.W. Ahn, I.W. Kim, Phys. Status Solidi A 207, 2578 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104, 124106 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 105, 084112 (2009)CrossRefGoogle Scholar
  23. 23.
    C.R. Zhou, X.Y. Liu, W.Z. Li, C.L. Yuan, Solid State Commun. 149, 481 (2009)CrossRefGoogle Scholar
  24. 24.
    F. Ni, L. Luo, X. Pan, W. Li, J.Q. Zhu, J. Alloys Compd. 541, 150 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Suchanicz, J. Kusz, H. Böhm, H. Duda, J. Eur. Ceram. Soc. 23, 1559 (2003)CrossRefGoogle Scholar
  26. 26.
    J.K. Lee, J.Y. Yi, K.S. Hong, J. Appl. Phys. 96, 1174 (2004)CrossRefGoogle Scholar
  27. 27.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Ni, L. Luo, W. Li, Y. Zhu, H. Luo, J. Alloys Compd. 509, 3958 (2011)CrossRefGoogle Scholar
  29. 29.
    Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)CrossRefGoogle Scholar
  30. 30.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)CrossRefGoogle Scholar
  31. 31.
    Q. Xu, D.P. Huang, M. Chen, W. Chen, H.X. Liu, B.H. Kim, J. Alloys Compd. 471, 310 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Bose, S.B. Krupanidhi, Appl. Phys. Lett. 90, 212902 (2007)CrossRefGoogle Scholar
  33. 33.
    T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, J. Appl. Phys. 108, 074107 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jian Wang
    • 1
  • Xiao-ming Chen
    • 1
  • Xu-mei Zhao
    • 1
  • Xiao-xia Liang
    • 1
  • Xin Liu
    • 1
  • Peng Liu
    • 1
  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations