Advertisement

Journal of Electroceramics

, Volume 32, Issue 4, pp 276–282 | Cite as

Solvothermal synthesis and electrochemical performance of rod-like V6O13 as cathode material for lithium ion battery

  • Jinyun He
  • Weimin Wang
  • Zhengguang Zou
  • Fei Long
  • Zhengyi Fu
Article

Abstract

Belt-like V6O13 precursor was successfully synthesized via a simple solvothermal method for the first time. The heat-treatment changed its chemical composition, morphology, structure and electrochemical performance. When heat-treated at 350 °C, the product is rod-like particles, which are 0.3 μm wide and 0.4 μm–2 μm long, exhibits the best electrochemical performance. At a rate of 0.1C and in the voltage range of 1.5–4.0 V, it delivered an initial discharge capacity of 323.5 mAhg−1. After 50 cycles, it can still sustain a discharge capacity of 267 mAhg−1. The enhanced electrochemical performance originates from its higher total conductivity, higher lithium diffusion coefficient and better structural reversibility.

Keywords

Vanadium oxide Solvothermal method Cathode Li-ion batteries 

Notes

Acknowledgments

The authors gratefully acknowledge the National Nature Science Foundation of China (Project No. 51162005) and the Natural Science Foundation of Guangxi Province (2013GXNSFDA019028).

References

  1. 1.
    Y. Wang, G.Z. Cao, Adv. Mater. 20, 2251–2269 (2008)CrossRefGoogle Scholar
  2. 2.
    H. Zhang, J. Neilson, D. Morse, J. Phys. Chem. C 114, 19550–19555 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Li, P. He, Y. Wang, E. Hosono, H. Zhou, J. Mater. Chem. 21, 10999–11009 (2011)CrossRefGoogle Scholar
  4. 4.
    H.M. Zeng, Y. Zhao, Y.J. Hao, Q.Y. Lai, J.H. Huang, X.Y. Ji, J. Alloys Compd. 477, 800–804 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, M. Zhou, M. Fan, C. Huang, C. Chen, Y. Cao et al., Curr. Appl. Phys. 11, 1159–1163 (2011)CrossRefGoogle Scholar
  6. 6.
    A.Q. Pan, H.B. Wu, X.W. Lou, Chem. Eur. J. 19, 494–500 (2013)CrossRefGoogle Scholar
  7. 7.
    A.Q. Pan, H.B. Wu, X.W. Lou, Angew. Chem. Int. Ed. 52, 2226–2230 (2013)CrossRefGoogle Scholar
  8. 8.
    A.Q. Pan, H.B. Wu, X.W. Lou, Energy Environ. Sci. 6, 1476–1479 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Heli, H. Yadegari, A. Jabbari, Mater. Chem. Phys. 126, 476–479 (2011)CrossRefGoogle Scholar
  10. 10.
    O. Bergstroem, T. Gustafsson, J.O. Thomas, Solid State Ionics 110, 179–186 (1998)CrossRefGoogle Scholar
  11. 11.
    K. West, B. Christinasen, T. Jacobsen, Electrochim. Acta 28, 1829–1836 (1983)CrossRefGoogle Scholar
  12. 12.
    M.Y. Sai’di, R. Koksbang, E.S. Sai’di, H. Shi, J. Barker, J. Power Sources 68, 726–729 (1997)CrossRefGoogle Scholar
  13. 13.
    I. Olsen, J. Barker, R. Koksbang, Solid State Ionics 83, 125–133 (1996)CrossRefGoogle Scholar
  14. 14.
    J. Barker, E.S. Saidi, M.Y. Saidi, Electrochim. Acta 40, 949–952 (1995)CrossRefGoogle Scholar
  15. 15.
    C. Leger, S. Bach, J.P. Pereira-Ramos, J. Solid State Electrochem. 11, 71–76 (2007)CrossRefGoogle Scholar
  16. 16.
    E. Andrukaitis, J. Power Sources 119–121, 205–210 (2003)CrossRefGoogle Scholar
  17. 17.
    E. Andrukaitis, I. Hill, J. Power Sources 136, 290–295 (2004)CrossRefGoogle Scholar
  18. 18.
    Z.Y. Huang, H.M. Zeng, L. Xue, X.G. Zhou, Y. Zhao, Q.Y. Lai, J. Alloys Compd. 509, 10080–10085 (2011)CrossRefGoogle Scholar
  19. 19.
    Y.C. Liu, Z.G. Zou, F. Long, Appl. Mech. Mater. 33–34, 1780–1784 (2010)CrossRefGoogle Scholar
  20. 20.
    Y. Li, P.S. Fedkiw, S.A. Khan, Electrochim. Acta 47, 3853–3861 (2002)CrossRefGoogle Scholar
  21. 21.
    Y.L. Wang, X.K. Chen, M.C. Li, R. Wang, G. Wu, J.P. Yang et al., Surf. Coat. Technol. 201, 5344–5347 (2007)CrossRefGoogle Scholar
  22. 22.
    L.L. Liu, X.J. Wang, Y.S. Zhu, C.L. Hu, Y.P. Wu, R. Holze, J. Power Sources 224, 290–294 (2013)CrossRefGoogle Scholar
  23. 23.
    A.Q. Pan, J. Liu, J.G. Zhang, G.Z. Cao, W. Xu, Z.M. Nie et al., J. Mater. Chem. 21, 19411 (2011)Google Scholar
  24. 24.
    Q.C. Zhuang, T. Wei, L.L. Du, Y.L. Cui, L. Fang, S.G. Sun, J. Phys. Chem. C 114, 8614–8621 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Liu, A. Manthiram, Chem. Mater. 21, 1695–1707 (2009)CrossRefGoogle Scholar
  26. 26.
    A.Y. Shenouda, H.K. Liu, J. Power Sources 185, 1386–1391 (2008)CrossRefGoogle Scholar
  27. 27.
    O. Bergstroem, T. Gustafsson, J.O. Thomas, Acta Crystallogr. C 54, 1204–1206 (1998)CrossRefGoogle Scholar
  28. 28.
    Y.N. Ko, J.H. Kim, S.H. Choi, Y.C. Kang, J. Power Sources 211, 84–91 (2012)CrossRefGoogle Scholar
  29. 29.
    W. Tang, X.W. Gao, Y.S. Zhu, Y.B. Yue, Y. Shi, Y.P. Wu et al., J. Mater. Chem. 22, 20143–20145 (2012)CrossRefGoogle Scholar
  30. 30.
    A.Q. Pan, J. Liu, J.G. Zhang, G.Z. Cao, W. Xu, Z.M. Nie et al., J. Mater. Chem. 21, 19411 (2011)Google Scholar
  31. 31.
    Y. Chen, H. Liu, W.L. Ye, Scr. Mater. 59, 372–375 (2008)CrossRefGoogle Scholar
  32. 32.
    C.K. Chan, H. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, Y. Cui, Nano Lett. 7, 490–495 (2007)CrossRefGoogle Scholar
  33. 33.
    J. Liu, A. Manthiram, J. Phys. Chem. C 113, 15073–15079 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jinyun He
    • 1
    • 2
  • Weimin Wang
    • 1
  • Zhengguang Zou
    • 2
  • Fei Long
    • 2
  • Zhengyi Fu
    • 1
  1. 1.Sate Key Laboratory of Advanced Technology for Material Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi Zhuang Autonomous RegionGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations