Skip to main content
Log in

Solvothermal synthesis and electrochemical performance of rod-like V6O13 as cathode material for lithium ion battery

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Belt-like V6O13 precursor was successfully synthesized via a simple solvothermal method for the first time. The heat-treatment changed its chemical composition, morphology, structure and electrochemical performance. When heat-treated at 350 °C, the product is rod-like particles, which are 0.3 μm wide and 0.4 μm–2 μm long, exhibits the best electrochemical performance. At a rate of 0.1C and in the voltage range of 1.5–4.0 V, it delivered an initial discharge capacity of 323.5 mAhg−1. After 50 cycles, it can still sustain a discharge capacity of 267 mAhg−1. The enhanced electrochemical performance originates from its higher total conductivity, higher lithium diffusion coefficient and better structural reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Wang, G.Z. Cao, Adv. Mater. 20, 2251–2269 (2008)

    Article  Google Scholar 

  2. H. Zhang, J. Neilson, D. Morse, J. Phys. Chem. C 114, 19550–19555 (2010)

    Article  Google Scholar 

  3. H. Li, P. He, Y. Wang, E. Hosono, H. Zhou, J. Mater. Chem. 21, 10999–11009 (2011)

    Article  Google Scholar 

  4. H.M. Zeng, Y. Zhao, Y.J. Hao, Q.Y. Lai, J.H. Huang, X.Y. Ji, J. Alloys Compd. 477, 800–804 (2009)

    Article  Google Scholar 

  5. Y. Zhang, M. Zhou, M. Fan, C. Huang, C. Chen, Y. Cao et al., Curr. Appl. Phys. 11, 1159–1163 (2011)

    Article  Google Scholar 

  6. A.Q. Pan, H.B. Wu, X.W. Lou, Chem. Eur. J. 19, 494–500 (2013)

    Article  Google Scholar 

  7. A.Q. Pan, H.B. Wu, X.W. Lou, Angew. Chem. Int. Ed. 52, 2226–2230 (2013)

    Article  Google Scholar 

  8. A.Q. Pan, H.B. Wu, X.W. Lou, Energy Environ. Sci. 6, 1476–1479 (2013)

    Article  Google Scholar 

  9. H. Heli, H. Yadegari, A. Jabbari, Mater. Chem. Phys. 126, 476–479 (2011)

    Article  Google Scholar 

  10. O. Bergstroem, T. Gustafsson, J.O. Thomas, Solid State Ionics 110, 179–186 (1998)

    Article  Google Scholar 

  11. K. West, B. Christinasen, T. Jacobsen, Electrochim. Acta 28, 1829–1836 (1983)

    Article  Google Scholar 

  12. M.Y. Sai’di, R. Koksbang, E.S. Sai’di, H. Shi, J. Barker, J. Power Sources 68, 726–729 (1997)

    Article  Google Scholar 

  13. I. Olsen, J. Barker, R. Koksbang, Solid State Ionics 83, 125–133 (1996)

    Article  Google Scholar 

  14. J. Barker, E.S. Saidi, M.Y. Saidi, Electrochim. Acta 40, 949–952 (1995)

    Article  Google Scholar 

  15. C. Leger, S. Bach, J.P. Pereira-Ramos, J. Solid State Electrochem. 11, 71–76 (2007)

    Article  Google Scholar 

  16. E. Andrukaitis, J. Power Sources 119–121, 205–210 (2003)

    Article  Google Scholar 

  17. E. Andrukaitis, I. Hill, J. Power Sources 136, 290–295 (2004)

    Article  Google Scholar 

  18. Z.Y. Huang, H.M. Zeng, L. Xue, X.G. Zhou, Y. Zhao, Q.Y. Lai, J. Alloys Compd. 509, 10080–10085 (2011)

    Article  Google Scholar 

  19. Y.C. Liu, Z.G. Zou, F. Long, Appl. Mech. Mater. 33–34, 1780–1784 (2010)

    Article  Google Scholar 

  20. Y. Li, P.S. Fedkiw, S.A. Khan, Electrochim. Acta 47, 3853–3861 (2002)

    Article  Google Scholar 

  21. Y.L. Wang, X.K. Chen, M.C. Li, R. Wang, G. Wu, J.P. Yang et al., Surf. Coat. Technol. 201, 5344–5347 (2007)

    Article  Google Scholar 

  22. L.L. Liu, X.J. Wang, Y.S. Zhu, C.L. Hu, Y.P. Wu, R. Holze, J. Power Sources 224, 290–294 (2013)

    Article  Google Scholar 

  23. A.Q. Pan, J. Liu, J.G. Zhang, G.Z. Cao, W. Xu, Z.M. Nie et al., J. Mater. Chem. 21, 19411 (2011)

    Google Scholar 

  24. Q.C. Zhuang, T. Wei, L.L. Du, Y.L. Cui, L. Fang, S.G. Sun, J. Phys. Chem. C 114, 8614–8621 (2010)

    Article  Google Scholar 

  25. J. Liu, A. Manthiram, Chem. Mater. 21, 1695–1707 (2009)

    Article  Google Scholar 

  26. A.Y. Shenouda, H.K. Liu, J. Power Sources 185, 1386–1391 (2008)

    Article  Google Scholar 

  27. O. Bergstroem, T. Gustafsson, J.O. Thomas, Acta Crystallogr. C 54, 1204–1206 (1998)

    Article  Google Scholar 

  28. Y.N. Ko, J.H. Kim, S.H. Choi, Y.C. Kang, J. Power Sources 211, 84–91 (2012)

    Article  Google Scholar 

  29. W. Tang, X.W. Gao, Y.S. Zhu, Y.B. Yue, Y. Shi, Y.P. Wu et al., J. Mater. Chem. 22, 20143–20145 (2012)

    Article  Google Scholar 

  30. A.Q. Pan, J. Liu, J.G. Zhang, G.Z. Cao, W. Xu, Z.M. Nie et al., J. Mater. Chem. 21, 19411 (2011)

    Google Scholar 

  31. Y. Chen, H. Liu, W.L. Ye, Scr. Mater. 59, 372–375 (2008)

    Article  Google Scholar 

  32. C.K. Chan, H. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, Y. Cui, Nano Lett. 7, 490–495 (2007)

    Article  Google Scholar 

  33. J. Liu, A. Manthiram, J. Phys. Chem. C 113, 15073–15079 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Nature Science Foundation of China (Project No. 51162005) and the Natural Science Foundation of Guangxi Province (2013GXNSFDA019028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Wang, W., Zou, Z. et al. Solvothermal synthesis and electrochemical performance of rod-like V6O13 as cathode material for lithium ion battery. J Electroceram 32, 276–282 (2014). https://doi.org/10.1007/s10832-014-9889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9889-1

Keywords

Navigation