Skip to main content
Log in

Growth characteristics and film properties of gallium doped zinc oxide prepared by atomic layer deposition

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

We carried out comprehensive studies on structural, optical, and electrical properties of gallium-doped zinc oxide (Ga:ZnO) films deposited by atomic layer deposition (ALD). The gallium(III) isopropoxide (GTIP) was used as a Ga precursor, which showed pure Ga2O3 thin film with high growth rate. Using this precursor, conductive Ga doped ZnO thin film can be successfully deposited. The electrical, structural and optical properties were systematically investigated as functions of the Ga doping contents and deposition temperature. The best carrier concentration and transmittance (7.2 × 1020 cm−3 and 83.5 %) with low resistivity (≈3.5 × 10−3 Ωcm) were observed at 5 at.% Ga doping concentration deposited at 250 °C. Also, low correlation of deposition temperature with the carrier concentration and film structure was observed. This can be explained by the almost same atomic radius of Ga and Zn atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Wager, Science 300(5623), 1245–1246 (2003)

    Article  CAS  Google Scholar 

  2. J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Thin Solid Films 520, 1679 (2012)

    Article  CAS  Google Scholar 

  3. P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H.H. Johannes, W. Kowalsky, T. Riedl, Adv. Mater. 18(6), 738–741 (2006)

    Article  Google Scholar 

  4. M. Tadatsugu, Semicond. Sci. Technol. 20(4), S35 (2005)

    Article  Google Scholar 

  5. S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, J. Vac. Sci. Technol. A Vac. Surf. Films 8(3), 1403–1406 (1990)

    Article  CAS  Google Scholar 

  6. Y.C. Lin, Y.C. Jian, J.H. Jiang, Appl. Surf. Sci. 254(9), 2671–2677 (2008)

    Article  CAS  Google Scholar 

  7. V. Bhosle, J. Narayan, J. Appl. Phys. 100, 093519 (2006)

    Article  Google Scholar 

  8. S. Liang, X. Bi, J. Appl. Phys. 104, 113533 (2008)

    Article  Google Scholar 

  9. D.-T. Phan, A. A. M. Farag, F. Yakuphanoglu, G. S. Chung, J. Electroceram. 29, 12 (2012)

    Google Scholar 

  10. B. Houng, H. B. Chen, J. Electroceram. 29, 1 (2012)

    Google Scholar 

  11. S.-M. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513, 90 (2006)

    Article  CAS  Google Scholar 

  12. C.-F. Yu, S.-H. Chen, S.-J. Sun, H. Chou, Appl. Surf. Sci. 257, 6498 (2011)

    Article  CAS  Google Scholar 

  13. J.J. Robbins, C. Fry, C.A. Wolden, J. Cryst. Growth 263, 283 (2004)

    Article  CAS  Google Scholar 

  14. J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon, Opt. Mater. 33, 768 (2011)

    Article  CAS  Google Scholar 

  15. H. Kim, H.B.R. Lee, W.J. Maeng, Thin Solid Films 517, 2563 (2009)

    Article  CAS  Google Scholar 

  16. W.J. Maeng, W.-H. Kim, H. Kim, J. Appl. Phys. 107, 074109 (2010)

    Article  Google Scholar 

  17. K. Saito, Y. Hiratsuka, A. Omata, H. Makino, S. Kishimoto, T. Yamamoto, N. Horiuchi, H. Hirayama, Superlattice. Microst. 42, 172 (2007)

    Article  CAS  Google Scholar 

  18. I. Donmez, C. Ozgit-Akgun, N. Biyikli, J. Vac. Sci. Technol. A 31(1), 01A110 (2013)

    Article  Google Scholar 

  19. N.-J. Seong, S.-G. Yoon, W.-J. Lee, Appl. Phys. Lett. 87, 082909 (2005)

    Article  Google Scholar 

  20. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, J. Appl. Phys. 98, 023504 (2005)

    Article  Google Scholar 

  21. C.L. Dezelah IV, J. Niinisto, K. Arstila, L. Niinisto, C.H. Winter, Chem. Mater. 18, 471 (2006)

    Article  CAS  Google Scholar 

  22. A.K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M.K. Nazeeruddin, M. Gratzel, Nano Lett. 12, 3941 (2012)

    Article  CAS  Google Scholar 

  23. M. Nieminen, L. Niinisto, E. Rauhala, J. Mater. Chem. 6, 27 (1996)

    Article  CAS  Google Scholar 

  24. H. Lee, K. Kim, J.-J. Woo, D.-J. Jun, Y. Park, Y. Kim, H.W. Lee, Y.J. Cho, H.M. Cho, Chem. Vap. Depos. 17, 191 (2011)

    Article  CAS  Google Scholar 

  25. D.H. Kim, S.H. Yoo, T.-M. Chung, K.-S. An, H.-S. Yoo, Y. Kim, Bull. Korean Chem. Soc. 23, 225 (2002)

    Article  CAS  Google Scholar 

  26. A. Trinchi, W. Wlodarski, Y.X. Li, Sensors Actuators B 100, 94 (2004)

    Article  CAS  Google Scholar 

  27. D. Kisailus, J.H. Choi, F.F. Lange, J. Cryst. Growth 249, 106 (2003)

    Article  CAS  Google Scholar 

  28. R.G. Gordon, D. Hausmann, E. Kim, J. Shepard, Chem. Vap. Depos. 9, 73 (2003)

    Article  CAS  Google Scholar 

  29. W.J. Maeng, S.-J. Park, H. Kim, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24(5), 2276–2281 (2006)

    Article  CAS  Google Scholar 

  30. W.J. Maeng, J.-W. Lee, K.-B. Jeong, J.-S. Park, J. Phys. D Appl. Phys. 44, 445305 (2011)

    Article  Google Scholar 

  31. C. Nahm, S. Shin, W. Lee, J.I. Kim, D.-R. Jung, J. Kim, S. Nam, S. Byun, B. Park, Curr. Appl. Phys. 13, 415 (2013)

    Article  Google Scholar 

  32. K. Nomura, A. Takagi, T. Kamiya, H. Ohita, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. 45(5B), 4303 (2006)

    Article  CAS  Google Scholar 

  33. S. Ghosh, A. Sarkar, S. Chaudhuri, A.K. Pal, Thin Solid Films 205(1), 64–68 (1991)

    Article  CAS  Google Scholar 

  34. J.D. Ye, S.L. Gu, S.M. Zhu, S.M. Liu, Y.D. Zheng, R. Zhang, Y. Shi, H.Q. Yu, Y.D. Ye, J. Cryst. Growth 283, 279 (2005)

    Article  CAS  Google Scholar 

  35. N. Roberts, R.-P. Wang, A.W. Sleight, W.W. Warren, J. Phys. Rev. B 57(10), 5734 (1998)

    Article  CAS  Google Scholar 

  36. P.R. Chalker, P.A. Marshall, S. Romani, J.W. Roberts, S.J.C. Irvine, D.A. Lamb, A.J. Clayton, P.A. Williams, J. Vac. Sci. Technol. A 31(1), 01A120 (2013)

    Article  Google Scholar 

  37. V.K. Josepovits, O. Krafcsik, G. Kiss, I.V. Perczel, Sensors Actuators B Chem. 48(1–3), 373–375 (1998)

    Article  CAS  Google Scholar 

  38. A.J. Leenheer, J.D. Perkins, M.F.A.M. van Hest, J.J. Berry, R.P. O’Hayre, D.S. Ginley, Phys. Rev. B 77, 115215 (2008)

    Article  Google Scholar 

  39. W.J. Maeng, S.-J. Kim, H. Kim, K.-B. Chung, J.-S. Park, J. Vac. Sci. Technol. B 30, 031210 (2012)

    Article  Google Scholar 

  40. Y.H. Kim, J. Jeong, K.S. Lee, B. Cheong, T.Y. Seong, W.M. Kim, Appl. Surf. Sci. 257(1), 109–115 (2010)

    Article  CAS  Google Scholar 

  41. S. Kohiki, M. Nishitani, T. Wada, J. Appl. Phys. 75(4), 2069 (1994)

    Article  CAS  Google Scholar 

  42. D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, K.-B. Kim, Adv. Funct. Mater. 21(3), 448–455 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported from the collaborative R&D program with technology advanced country “Development of materials and stacked device structure for next generation solar cells, 2010-advanced-B-105” by MKE. In addition, the work was supported by the IT R&D program of MKE/KEIT (Grant No. 10041416, the core technology development of light and space adaptable new mode display for energy saving on 7 in. and 2 W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Seong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeng, W.J., Park, JS. Growth characteristics and film properties of gallium doped zinc oxide prepared by atomic layer deposition. J Electroceram 31, 338–344 (2013). https://doi.org/10.1007/s10832-013-9848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9848-2

Keywords

Navigation