Journal of Electroceramics

, Volume 31, Issue 1–2, pp 224–230 | Cite as

Catalytic activity of carbon-sphere/Co3O4/RuO2 nanocomposite for Li-air batteries

  • Chang Sung Park
  • Jae Hyun Kim
  • Yong Joon Park


A carbon-sphere/Co3O4/RuO2 nanocomposite was fabricated as part of a new approach to develop advanced Li–air batteries. The nanocomposite showed homogeneously dispersed Co3O4 and RuO2 nanoparticles on the surface of carbon spheres, whose shape was effective in increasing the catalytic surface area and enhancing the stability of carbon and the catalyst. A high discharge capacity, relatively stable reversibility, and low overpotential were observed in electrochemical tests of an electrode containing this carbon-sphere/Co3O4/RuO2 nanocomposite. The results showed that the nanocomposite can be introduced as a promising catalyst in Li–air cells.


Li-air battery Air electrode Co3O4 RuO2 Catalyst Composite 



This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government(MEST) (NRF-2009-C1AAA001-0094219) and a basic research program (11_EN-03) through the Daegu-Gyeongbuk Institute of Science and Technology (DGIST) funded by the Ministry of Education, Science and Technology (MEST). This work was also supported by Kyonggi University's Graduate Research Assistantship 2012.”


  1. 1.
    H.G. Song, S.B. Kim, Y.J. Park, J. Electroceram. 29, 163 (2012)CrossRefGoogle Scholar
  2. 2.
    H.-S. Kim, M. Kong, K. Kim, I.-J. Kim, H.-B. Gu, J. Electroceram. 23, 219 (2009)CrossRefGoogle Scholar
  3. 3.
    J.-H. Lee, Y.-M. Choi, U. Paik, J.-G. Park, J. Electroceram. 17, 657 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Ohzuku, R.J. Brodd, J. Power Sources 174, 449 (2007)CrossRefGoogle Scholar
  5. 5.
    C.G. Son, D.R. Chang, H.S. Kim, Y.S. Lee, J Electrochemical Electrochem Sci Technol 2, 103 (2011)CrossRefGoogle Scholar
  6. 6.
    H.G. Song, J.Y. Kim, Y.J. Park, Electrochim. Acta 56, 6896 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Ahn, H.-S. Kim, S. Yang, J.Y. Do, B.H. Kim, K. Kim, J. Electroceram. 23, 289 (2009)CrossRefGoogle Scholar
  8. 8.
    H.J. Lee, K.S. Park, Y.J. Park, J. Power Sources 195, 6122 (2010)CrossRefGoogle Scholar
  9. 9.
    K.M. Shaju, P.G. Bruce, J. Power Sources 174, 1201 (2007)CrossRefGoogle Scholar
  10. 10.
    M.S. Park, S.H. Hyun, S.C. Nam, J. Electroceram. 17, 651 (2006)CrossRefGoogle Scholar
  11. 11.
    H.G. Song, Y.J. Park, Mater Res Bull 47, 2843 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.-U. Park, R.A. Shakoor, K.Y. Park, K. Kang, J Electrochem Sci Technol 2, 14 (2011)CrossRefGoogle Scholar
  13. 13.
    J.-M. Kim, J.-H. Jeong, B.-S. Jin, H.-S. Kim, J Electrochem Sci Technol 2, 97 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Kim, J.K. Noh, S.H. Yu, W. Chang, K.Y. Chung, B.W. Cho, J. Electroceram. 30, 159 (2013)CrossRefGoogle Scholar
  15. 15.
    H.J. Jeon, C.S. Kang, G.W. Yoo, C. Kim, J.T. Son, J. Electroceram. 30, 172 (2013)CrossRefGoogle Scholar
  16. 16.
    J.W. Shin, J.H. Ryu, J. Jeong, D.H. Yoon, J. Electroceram. 28, 178 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, J. Am. Chem. Soc. 128, 1390 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, Angew. Chem. Int. Ed. 47, 4521 (2008)CrossRefGoogle Scholar
  19. 19.
    F. Jiao, P.G. Bruce, Adv. Mater. 19, 657 (2007)CrossRefGoogle Scholar
  20. 20.
    R. Padbury, X. Zhang, J. Power Sources 196, 4436 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Kraytsberg, Y. E-Eli, J. Power Sources 196, 886 (2011)CrossRefGoogle Scholar
  22. 22.
    J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Adv. Energy Mater. 1, 34 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Débart, J. Bao, G. Armstrong, P.G. Bruce, J. Power Sources 174, 1177 (2007)CrossRefGoogle Scholar
  24. 24.
    X. Wang, L. Yu, X.L. Wu, F. Yuan, Y.G. Guo, Y. Ma, J. Yao, J. Phys. Chem. C 113, 15553 (2009)CrossRefGoogle Scholar
  25. 25.
    T.H. Yoon, Y.J. Park, Nanoscale Res. Lett. 7, 28 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Teng, W. Yao, Y. Zheng, Y. Ma, T. Xu, G. Gao, S. Liang, Y. Teng, Y. Zhu, Talanta 76, 1058 (2008)CrossRefGoogle Scholar
  27. 27.
    K.S. Kim, Y.J. Park, Nanoscale Res. Lett. 7, 47 (2012)CrossRefGoogle Scholar
  28. 28.
    T.H. Yoon, Y.J. Park, J. Power Sources, on line publication (2013)Google Scholar
  29. 29.
    H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, B. Scrosati, Nat. Chem. 4, 579 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Laoire, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Electrochem. Soc. 158, 302 (2011)CrossRefGoogle Scholar
  31. 31.
    B.D. McCloskey, D.S. Bethune, R.M. Shelby, G. Girishkumar, A.C. Luntz, J. Phys. Chem. Lett. 2, 1161 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chang Sung Park
    • 1
  • Jae Hyun Kim
    • 2
  • Yong Joon Park
    • 1
  1. 1.Department of Advanced Materials EngineeringKyonggi UniversitySuwonRepublic of Korea
  2. 2.Division of Green Energy ResearchDaegu-Gyeongbuk Institute of Science and TechnologyDaeguRepublic of Korea

Personalised recommendations