Journal of Electroceramics

, Volume 31, Issue 1–2, pp 35–41 | Cite as

Piezoelectric energy harvesting system for the vertical vibration of superconducting Maglev train

  • Daniel Song
  • Hyungkwan Jang
  • Se Bin Kim
  • Tae Hyun Sung


In order to scavenge wasted energy from the vertical vibration of the superconductor Maglev bogie system into usable energy, an energy harvesting system was designed and optimized by applying steel balls for piezoelectric material to effectively convert mechanical energy into electrical energy. Different size of steel balls were placed on a piezoelectric plate to amplify effects of piezoelectric material caused by the ambient vibration of superconducting Maglev train. An experiment was conducted to study the effects of the size of the balls (5.95, 7.14, 7.95, 9.55, 11.15, 12.71 or 15.89 mm), different total loads (68, 80, 100 g), vibration frequencies (11, 28 Hz), and the insertion of an LED. The following experimental results were found. First, the output voltages of the piezoelectric system increased when the steel ball diameter sizes increased until the optimum size determined by its geometric structure was reached. Secondly, as the vibration frequency increased, the output voltage also increased from millivolts to volts.


Piezoelectricity Energy harvesting system Vibration Superconducting Maglev 



This work was supported by the Future Rail Technology Development Project (KICTEP) grant funded by the Ministry of Land, Transport and Maritime Affairs, Republic of Korea (Development of piezoelectric harvesting system for application of train).


  1. 1.
    M. Givoni, Transp. Rev. 26, 593 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Maeda, Ind. Heal. 43, 390 (2005)CrossRefGoogle Scholar
  3. 3.
    H.W. Lee, K.C. Kim, J. Lee, IEEE Trans. Magn. 42, 1917 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Shudo, S. Nakagaki, T. Uchida, T. Yamashita, H. Nakao, Y. Sanada, A. Miura, M. Yamaji, M. Terai, S. Inadama, IEEE Trans. App. Supercond. 7, 932 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Cassat, M. Jufer, IEEE Trans. App. Supercond. 12, 915 (2002)CrossRefGoogle Scholar
  6. 6.
    N. Lee, H. Han, J. Lee, B. Kang, Proceeding of International Conference on Electrical Machines and Systems. 1999 (2007)Google Scholar
  7. 7.
    N. Hägele, F. Dignath, Multibody Syst Dyn. 21, 213 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Sanchez, C. Navau, Physica. C. 268, 46 (1996)CrossRefGoogle Scholar
  9. 9.
    K. Watanabe, H. Yoshioka, E. Suzuki, T. Tohtake, M. Nagai, J. Syst. Des. Dyn. 1, 593 (2007)Google Scholar
  10. 10.
    E. Suzuki, J. Shirasaki, K. Watanabe, H. Hoshino, M. Nagai, J. Syst. Des. Dyn. 1, 3 (2008)Google Scholar
  11. 11.
    S. Sakamoto, H. Watanabe, T. Takizawa, E. Suzuki, M. Terai, IEEE Trans. App. Supercond. 7, 3791 (1997)CrossRefGoogle Scholar
  12. 12.
    K. Yamamoto, Y. Kozuma, N. Tagawa, S. Hosaka, H. Tsunoda, QR of RTRI. 45, 7 (2004)CrossRefGoogle Scholar
  13. 13.
    S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006)CrossRefGoogle Scholar
  14. 14.
    S.C. Lin, B.S. Lee, W.J. Wu, C.K. Lee, IEEE International Ultrasonics Symposium Proceedings. 755 (2009)Google Scholar
  15. 15.
    J.S. Lee, S.W. Lee, H.I. Koh, W.H. You, Proceeding of Conference on the Korean Society for Railways. (2007)Google Scholar
  16. 16.
    J.S. Lee, S.H. Choi, S.S. Kim, C.S. Park, Proc. Conf. Korean Soc. Railw. 12, 465 (2009)Google Scholar
  17. 17.
    Y. Tadesse, S. Zhang, S. Priya, J. Intellect. Mater. Syst. Struct. 20, 625 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Song
    • 1
  • Hyungkwan Jang
    • 1
  • Se Bin Kim
    • 1
  • Tae Hyun Sung
    • 1
  1. 1.Department of Electrical EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations