Advertisement

Journal of Electroceramics

, Volume 31, Issue 1–2, pp 75–80 | Cite as

The equivalent circuits for polaronic relaxation: Taking the LaNi3/4Mo1/4O3 as a model sample

  • Lina Liu
  • Chunchang Wang
  • Xiaohong Sun
  • Guojing Wang
  • Changmei Lei
  • Teng Li
Article
  • 152 Downloads

Abstract

We herein discuss the equivalent circuits for polaronic relaxation based on the results of the low-temperature dielectric properties of LaNi3/4Mo1/4O3. The ceramic samples were prepared via solid-state reaction route. The dielectric properties were investigated in the temperature range from 103 K to 330 K and the frequency range from 20 Hz to 10 MHz. Our results showed that the Debye-like relaxation found in the sample was related to be a polaronic relaxation caused by localized carriers. At low enough temperatures below 103 K, the carriers were strictly confined and the equivalent circuit for impedance spectra was an ideal capacitor. At the temperatures around room temperature, the carriers can hop between spatially fluctuating lattice potentials, the circuit of R − CPE (R = resistance, CPE = constant phase element) was found to be the better model to describe the impedance data.

Keywords

Equivalent circuit Relaxation Polaron 

Notes

Acknowledgments

This work has been subsidized by the National Natural Science Foundation of China (Grant no. 11074001).

References

  1. 1.
    J.E. Bauerle, J. Phys. Chem. Solid 30, 2657 (1969)CrossRefGoogle Scholar
  2. 2.
    M.A.L. Nobre, S. Lanfredi, J. Phys. Condens. Matter 12, 7833 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Dutta, T.P. Sinha, J. Alloys Compd. 509, 1705 (2011)CrossRefGoogle Scholar
  4. 4.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)CrossRefGoogle Scholar
  5. 5.
    S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86, 2215 (1999)CrossRefGoogle Scholar
  6. 6.
    C.C. Wang, L.W. Zhang, Phys. Rev. B 74, 024106 (2006)CrossRefGoogle Scholar
  7. 7.
    A.K. Jonscher, J. Phys. D Appl. Phys. 32, R 57 (1999)CrossRefGoogle Scholar
  8. 8.
    A.S. Nowick, A.V. Vaysleyb, I. Kuskovsky, Phys. Rev. B 58, 28398 (1998)CrossRefGoogle Scholar
  9. 9.
    O. Bidault, M. Maglione, M. Actis, M. Kchikech, B. Salce, Phys. Rev. B 52, 4191 (1995)CrossRefGoogle Scholar
  10. 10.
    J. Miao, X.G. Xu, Y. Jiang, L.X. Cao, B.R. Zhao, Appl. Phys. Lett. 95, 132905 (2009)CrossRefGoogle Scholar
  11. 11.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  12. 12.
    W. Li, R.W. Schwartz, Appl. Phys. Lett. 89, 242906 (2006)CrossRefGoogle Scholar
  13. 13.
    R. Gerhardt, J. Phys. Chem. Solid 55, 1491 (1994)CrossRefGoogle Scholar
  14. 14.
    Q.C. Wang, R. Gerhardt, Solid State Ionics 42, 213 (1990)CrossRefGoogle Scholar
  15. 15.
    N. Biskup, A. Andres, J.L. Martinez, Phys. Rev. B 72, 024115 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lina Liu
    • 1
  • Chunchang Wang
    • 1
  • Xiaohong Sun
    • 1
  • Guojing Wang
    • 1
  • Changmei Lei
    • 1
  • Teng Li
    • 1
  1. 1.Laboratory of Dielectric Functional Materials, School of Physics & Material ScienceAnhui UniversityHefeiChina

Personalised recommendations