Skip to main content

Advertisement

Log in

Effects of electric field and poling on the fatigue of cracked piezoelectric ceramics in cyclic three-point bending

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This paper deals with the fatigue behavior of cracked piezoelectric ceramics in cyclic bending under electric fields both numerically and experimentally. Fatigue tests were carried out in three-point bending with the single-edge precracked-beam specimens. The crack was created normal to the poling direction. Number of cycles to failure was measured under different electric fields. A plane strain finite element analysis was also performed, and the effect of polarization switching on the energy release rate was discussed under a high negative electric field. In addition, possible mechanisms for crack growth were discussed by scanning electron microscope examination of the fracture surface of the piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Shindo, in Fracture and Crack Mechanics, ed. by J. Yang. Special Topics in the Theory of Piezoelectricity (Springer, Dordrecht Heidelberg London New York, 2009), p. 81

  2. Y. Shindo, F. Narita, M. Hirama, Dynamic fatigue of cracked piezoelectric ceramics under electromechanical loading: three-point bending test and finite element analysis. J. Mech. Mater. Struct. 4, 719 (2009)

    Article  Google Scholar 

  3. F. Narita, Y. Shindo, F. Saito, Cyclic fatigue crack growth in three-point bending PZT ceramics under electromechanical loading. J. Am. Ceram. Soc. 90, 2517 (2007)

    Article  CAS  Google Scholar 

  4. Y. Shindo, F. Narita, T. Matsuda, Electric field dependence of the mode I energy release rate in single-edge cracked piezoelectric ceramics: effect due to polarization switching/dielectric breakdown. Acta Mechanica. 219, 129 (2011)

    Article  Google Scholar 

  5. J. Wang, T.-Y. Zhang, Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater. 55, 2465 (2007)

    Article  CAS  Google Scholar 

  6. S. Kalyanam, C.T. Sun, Modeling the fracture behavior of piezoelectric materials using a gradual polarization switching model. Mech. Mater. 41, 520 (2009)

    Article  Google Scholar 

  7. B.-X. Xu, D. Schrade, D. Gross, R. Mueller, Phase field simulation of domain structures in cracked ferroelectrics. Int. J. Fract. 165, 163 (2010)

    Article  Google Scholar 

  8. S.C. Hwang, C.S. Lynch, R.M. McMeeking, Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43, 2073 (1995)

    Article  CAS  Google Scholar 

  9. Y. Shindo, M. Yoshida, F. Narita, K. Horiguchi, Electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators: experiment and finite element simulation. J. Mech. Phys. Solids. 52, 1109 (2004)

    Article  Google Scholar 

  10. T. Steinkopff, Finite-element modelling of ferroic domain switching in piezoelectric ceramics. J. Euro. Ceram. Soc. 19, 1247 (1999)

    Article  CAS  Google Scholar 

  11. F. Narita, Y. Shindo, K. Hayashi, Bending and polarization switching of piezoelectric laminated actuators under electromechanical loading. Comput. Struct. 83, 1164 (2005)

    Article  Google Scholar 

  12. Y. Shindo, F. Narita, M. Hirama, Effect of the electrical boundary condition at the crack face on the mode I energy release rate in piezoelectric ceramics. Appl. Phys. Lett. 94, 081902 (2009)

    Article  Google Scholar 

  13. T. Matsudaira, Y. Matsumura, S. Kitaoka, H. Awaji, Effect of microstructure on the fatigue behavior of aluminum titanate ceramics. J. Mater. Sci. 44, 1622 (2009)

    Article  CAS  Google Scholar 

  14. Y. Zhou, Z. Sun, The compressive property and brittle-to-ductile transition of Ti3SiC2 ceramics. Mat. Res. Innovat. 3, 171 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan under the Grant-in-Aid for Scientific Research (B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhide Shindo.

Appendix

Appendix

For piezoelectric ceramics which exhibit symmetry of a hexagonal crystal of class 6 mm with respect to principal \(x_{1}, x_{2}\) and \(x_{3}\) axes, the constitutive relations can be written in the following form:

$$\begin{array}{rll}\left\{ \begin{array}{l} \varepsilon_{1}\\ \varepsilon_{2}\\ \varepsilon_{3}\\ \varepsilon_{4}\\ \varepsilon_{5}\\ \varepsilon_{6} \end{array}\right\} &=& \left[ \begin{array}{cccccc} s_{11} & s_{12} & s_{13} & 0 & 0 & 0 \\ s_{12} & s_{11} & s_{13} & 0 & 0 & 0 \\ s_{13} & s_{13} & s_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{66} \end{array}\right] \left\{ \begin{array}{l} \sigma_{1}\\ \sigma_{2}\\ \sigma_{3}\\ \sigma_{4}\\ \sigma_{5}\\ \sigma_{6} \end{array}\right\} \\ && + \left[ \begin{array}{lll} 0 & 0 & d_{31}\\ 0 & 0 & d_{31}\\ 0 & 0 & d_{33}\\ 0 & d_{15} & 0\\ d_{15} & 0 & 0\\ 0 & 0 & 0 \end{array}\right] \left\{ \begin{array}{l} E_{1}\\ E_{2}\\ E_{3} \end{array}\right\} + \left\{ \begin{array}{l} \varepsilon_{1}^{r} \\ \varepsilon_{2}^{r} \\ \varepsilon_{3}^{r} \\ \varepsilon_{4}^{r} \\ \varepsilon_{5}^{r} \\ \varepsilon_{6}^{r} \end{array}\right\}\end{array} $$
(39)
$$\begin{array}{rll}\left\{ \begin{array}{l} D_{1}\\D_{2}\\D_{3} \end{array}\right\} &=& \left[ \begin{array}{cccccc} 0&0&0&0&d_{15}&0\\ 0&0&0&d_{15}&0&0\\ d_{31}&d_{31}&d_{33}&0&0&0 \end{array}\right] \left\{ \begin{array}{c} \sigma_{1}\\ \sigma_{2}\\ \sigma_{3}\\ \sigma_{4}\\ \sigma_{5}\\ \sigma_{6} \end{array}\right\} \\ && + \left[ \begin{array}{ccc} \epsilon_{11}^{T}&0&0\\ 0&\epsilon_{11}^{T}&0\\ 0&0&\epsilon_{33}^{T} \end{array}\right] \left\{ \begin{array}{c} E_{1}\\ E_{2}\\ E_{3} \end{array}\right\} + \left\{ \begin{array}{c} P_{1}^{r} \\ P_{2}^{r} \\ P_{3}^{r} \end{array}\right\}\end{array} $$
(40)

where

$$\left. \begin{array}{l} \sigma_{1}=\sigma_{11},\ \sigma_{2}=\sigma_{22}, \ \sigma_{3}=\sigma_{33} \\ \sigma_{4}=\sigma_{23}=\sigma_{32}, \ \sigma_{5}=\sigma_{31}=\sigma_{13}, \ \sigma_{6}=\sigma_{12}=\sigma_{21} \end{array} \right\}$$
(41)
$$\left. \begin{array}{l} \varepsilon_{1}=\varepsilon_{11},\ \varepsilon_{2}=\varepsilon_{22}, \ \varepsilon_{3}=\varepsilon_{33} \\ \varepsilon_{4}=2\varepsilon_{23}=2\varepsilon_{32}, \ \varepsilon_{5}=2\varepsilon_{31}=2\varepsilon_{13}, \ \varepsilon_{6}=2\varepsilon_{12}=2\varepsilon_{21} \end{array} \right\}$$
(42)
$$\left. \begin{array}{l} \varepsilon_{1}^{r}=\varepsilon_{11}^{r},\ \varepsilon_{2}^{r}=\varepsilon_{22}^{r}, \ \varepsilon_{3}^{r}=\varepsilon_{33}^{r} \\ \varepsilon_{4}^{r}=2\varepsilon_{23}^{r}=2\varepsilon_{32}^{r}, \ \varepsilon_{5}^{r}=2\varepsilon_{31}^{r}=2\varepsilon_{13}^{r}, \ \varepsilon_{6}^{r}=2\varepsilon_{12}^{r}=2\varepsilon_{21}^{r} \end{array} \right\}$$
(43)
$$\left. \begin{array}{l} s_{11}=s_{1111}=s_{2222},\ s_{12}=s_{1122}, \ s_{13}=s_{1133}=s_{2233},\ \\ s_{33}=s_{3333},\ s_{44}=4s_{2323}=4s_{3131},\ \\ s_{66}=4s_{1212} =2(s_{11}-s_{12}) \end{array} \right\}$$
(44)
$$ d_{15}=2d_{131}=2d_{223}, \ \ d_{31}=d_{311}=d_{322}, \ \ d_{33}=d_{333} $$
(45)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shindo, Y., Sato, M. & Narita, F. Effects of electric field and poling on the fatigue of cracked piezoelectric ceramics in cyclic three-point bending. J Electroceram 31, 8–14 (2013). https://doi.org/10.1007/s10832-013-9798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9798-8

Keywords

Navigation