Journal of Electroceramics

, Volume 31, Issue 3–4, pp 275–279 | Cite as

Structural and improved electrical properties of rare earth (Sm, Tb and Ho) doped BiFe0.975Mn0.025O3 thin films

  • C. M. Raghavan
  • J. W. Kim
  • S. S. Kim


Pure BiFeO3 (BFO) and rare earth (RE) ion co-doped (Bi0.9RE0.1)(Fe0.975Mn0.025)O3 (RE = Sm, Tb and Ho, denoted by BSFM, BTFM and BHFM) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Formations of distorted rhombohedral perovskite structure for the thin films were confirmed by using an X-ray diffraction and a Raman scattering analysis. Microstructural features for the thin films were examined by using a scanning electron microscopic analysis. Among the thin films, the lowest leakage current density of 1.22 × 10−6 A/cm2 (at 100 kV/cm), large remnant polarization (2Pr) of 72.4 μC/cm2 and low coercive field (2E c ) of 689 kV/cm (at 980 kV/cm) were measured for the BTFM thin film.


Sol–gel processes X-ray methods Ferroelectric properties Perovskites 



This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029634).


  1. 1.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, C.-W. Nan, J. Appl. Phys. 103, 024103 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, J. Magn. Magn. Mater. 310, 1177 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Lubk, S. Gemming, N.A. Spaldin, Phys. Rev. B 80, 104110 (2009)CrossRefGoogle Scholar
  5. 5.
    F. Yan, M.O. Lai, L. Lu, T.J. Zhu, J. Phys. Chem. C 114, 6994 (2010)CrossRefGoogle Scholar
  6. 6.
    Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B 82, 024102 (2010)CrossRefGoogle Scholar
  7. 7.
    Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu, X. Zhao, Solid State Commun. 150, 1088 (2010)CrossRefGoogle Scholar
  8. 8.
    G.L. Yuan, S.W. Or, H.L.W. Chan, Z.G. Liu, J. Appl. Phys. 101, 024106 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Wu, J. Wang, J. Appl. Phys. 108, 034102 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)CrossRefGoogle Scholar
  11. 11.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  12. 12.
    K.S. Nalwa, A. Garg, A. Upadhyaya, Mater. Lett. 62, 878 (2008)CrossRefGoogle Scholar
  13. 13.
    D. Maurya, H. Thota, A. Garg, B. Pandey, P. Chand, H.C. Verma, J. Phys. Condens. Matter 21, 026007 (2009)CrossRefGoogle Scholar
  14. 14.
    N. Jeon, D. Rout, I.W. Kim, S.-J.L. Kang, Appl. Phys. Lett. 98, 072901 (2011)CrossRefGoogle Scholar
  15. 15.
    D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2011)CrossRefGoogle Scholar
  16. 16.
    M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Appl. Phys. Lett. 88, 042907 (2006)CrossRefGoogle Scholar
  17. 17.
    D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee, A.M. Awasthi, J. Magn. Magn. Mater. 320, 548 (2008)CrossRefGoogle Scholar
  18. 18.
    P. Hermet, M. Goffinet, J. Kreisel, P. Ghosez, Phys. Rev. B 75, 220102 (2007)CrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  20. 20.
    G. Kartopu, A. Lahmar, S. Habouti, C.-L. Solterbeck, B. Elouadi, M. Es-Souni, Appl. Phys. Lett. 92, 151910 (2008)CrossRefGoogle Scholar
  21. 21.
    A.Z. Simões, R.F. Pianno, E.C. Aguiar, E. Longo, J.A. Varela, J. Alloys Compds. 479, 274 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Lahmar, S. Habouti, M. Dietze, C.-H. Solterbeck, M. Es-Souni, Appl. Phys. Lett. 94, 012903 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsChangwon National UniversityChangwonRepublic of Korea

Personalised recommendations