Journal of Electroceramics

, Volume 30, Issue 3, pp 166–171 | Cite as

Fabrication and dielectric properties of Na0.5Bi0.5Cu3Ti4O12 from co-precipitation method



High dielectric Na0.5Bi0.5Cu3Ti4O12 (NBCTO) ceramics were firstly prepared by co-precipitation method at low temperature. X-ray diffraction results revealed that pure phase of NBCTO was achieved by calcination at 950 °C for 2 h. Thermo-gravimetric analysis on a dried NBCTO precursor was carried out to study the thermal decomposition process. The microstructure and dielectric properties of NBCTO ceramics sintered at different temperatures were investigated. The results indicate that the sintering temperature has a sensitive influence on the microstructure and dielectric properties. Higher sintering temperature gave rise to increased dielectric constant and dielectric loss of NBCTO samples, and the sample sintered at 975 °C for 8 h exhibits high dielectric constant of 8.3 × 103 and low dielectric loss of 0.069 at 10 kHz. The dielectric properties were further discussed by the impedance spectroscopy.


Na0.5Bi0.5Cu3Ti4O12 Co-precipitation Dielectric properties 



This work was funded by Soochow University (Q3109909) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. It was also partially supported by the National Natural Science Foundation of China under grant of 21074087.


  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  2. 2.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  3. 3.
    M.H. Cohen, J.B. Neaton, L.X. He, D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003)CrossRefGoogle Scholar
  4. 4.
    M.J. Pan, B.A. Bender, J. Am. Ceram. Soc. 88, 2611 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Li, A.W. Sleight, M.A. Subramanian, Solid State Commun. 135, 260 (2005)CrossRefGoogle Scholar
  6. 6.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)CrossRefGoogle Scholar
  7. 7.
    Y.W. Li, Y.D. Shen, Z.G. Hu, F.Y. Yue, J.H. Chu, Phys. Lett. A 373, 2389 (2009)CrossRefGoogle Scholar
  8. 8.
    L.J. Liu, L. Fang, Y.M. Huang, Y.H. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, C.Z. Hu, J. Appl. Phys. 110, 094101 (2011)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Yu, X.M. Li, J.Q. Wu, J. Am. Ceram. Soc. 95, 476 (2012)CrossRefGoogle Scholar
  10. 10.
    E.A. Patterson, S. Kwon, C.C. Huang, D.P. Cann, Appl. Phys. Lett. 87, 182911 (2005)CrossRefGoogle Scholar
  11. 11.
    S.H. Hong, D.Y. Kim, J. Am. Ceram. Soc. 90, 2118 (2007)CrossRefGoogle Scholar
  12. 12.
    F. Amaral, M.A. Valente, L.C. Costa, J. Non-Cryst. Solids 356, 822 (2010)CrossRefGoogle Scholar
  13. 13.
    L.F. Xu, P.B. Qi, S.S. Chen, R.L. Wang, C.P. Yang, Mater. Sci. Eng. B 177, 494 (2012)CrossRefGoogle Scholar
  14. 14.
    H.A. Ardakani, M. Alizadeh, R. Amini, M.R. Ghazanfari, Ceram. Int. 38, 4217 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Leret, J.F. Fernandez, J. de Frutos, D. Fernández-Hevia, J. Eur. Ceram. Soc. 27, 3901 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Sen, U.N. Maiti, R. Thapa, K.K. Chattopadhyay, J. Alloy. Compd. 506, 853 (2010)CrossRefGoogle Scholar
  17. 17.
    B. Cheng, Y.H. Lin, W. Deng, J.N. Cai, J.L. Lan, C.W. Nan, X. Xiao, J.L. He, J. Electroceram. 29, 250 (2012)CrossRefGoogle Scholar
  18. 18.
    T.T. Fang, L.T. Mei, H.F. Ho, Acta Mater. 54, 2867 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Chen, Y.F. Liu, F. Gao, Z.L. Du, J.M. Liu, X.N. Ying, X.M. Lu, J.S. Zhu, Solid State Commun. 141, 440 (2007)CrossRefGoogle Scholar
  20. 20.
    S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, Solid State Commun. 142, 28 (2007)CrossRefGoogle Scholar
  21. 21.
    T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)CrossRefGoogle Scholar
  22. 22.
    D.L. Sun, A.Y. Wu, S.T. Yin, J. Am. Ceram. Soc. 91, 169 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Kwon, D.P. Cann, J. Electroceram. 24, 231 (2010)CrossRefGoogle Scholar
  24. 24.
    L. Ni, X.M. Chen, J. Am. Ceram. Soc. 93, 184 (2010)CrossRefGoogle Scholar
  25. 25.
    R. Yu, H. Xue, Z.L. Cao, L. Chen, Z.X. Xiong, J. Eur. Ceram. Soc. 32, 1245 (2012)CrossRefGoogle Scholar
  26. 26.
    M.A. Rubia, P. Leret, J. Frutos, J.F. Fernandez, J. Am. Ceram. Soc. 95, 1866 (2012)CrossRefGoogle Scholar
  27. 27.
    M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)CrossRefGoogle Scholar
  28. 28.
    M.C. Ferrarelli, T.B. Adams, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 89, 212904 (2006)CrossRefGoogle Scholar
  29. 29.
    H.M. Ren, P.F. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Qiu, S.L. Yuan, Z.M. Tian, L. Chen, C.H. Wang, H.N. Duan, K. Guo, Appl. Phys. A 107, 379 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Qiu, Z.Z. Ma, S.X. Huo, H.N. Duan, Z.M. Tian, S.L. Yuan, L. Chen, J. Mater. Sci. Mater. Electron. 23, 1587 (2012)CrossRefGoogle Scholar
  32. 32.
    Z.P. Yang, H.M. Ren, X.L. Chao, P.F. Liang, Mater. Res. Bull. 47(1273) (2012)Google Scholar
  33. 33.
    B. Xu, J. Zhang, Z.M. Tian, S.L. Yuan, Mater. Lett. 75, 87 (2012)CrossRefGoogle Scholar
  34. 34.
    L. Marchin, S. Guilleremet-Fritsch, B. Durand, A.A. Levchenko, A. Navrotsky, T. Lebey, J. Am. Ceram. Soc. 91, 485 (2008)CrossRefGoogle Scholar
  35. 35.
    M.A. Ramirez, P.R. Bueno, J.A. Varela, E. Longo, Appl. Phys. Lett. 89, 212102 (2006)CrossRefGoogle Scholar
  36. 36.
    S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, J. Appl. Phys. 99, 084106 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Material ScienceSoochow UniversitySuzhouChina

Personalised recommendations