Journal of Electroceramics

, Volume 30, Issue 3, pp 119–128 | Cite as

High dielectric permittivity of SrBi2Nb2O9(SBN) added Bi2O3 and La2O3

  • E. O. Sancho
  • P. M. O. Silva
  • G. F. M. Pires Júnior
  • H. O. Rodrigues
  • D. B. Freitas
  • A. S. B. Sombra


In this paper, the structural and dielectric properties of SrBi2Nb2O9 (SBN) as a function of Bi2O3 or La2O3 addition level in the radio (RF) and microwave frequencies were investigated. The SBN, were prepared by using a new procedure in the solid-state reaction method with the addition of 3; 5; 10 and 15 wt.% of Bi2O3 or La2O3. A single orthorhombic phase was formed after calcination at 900 °C for 2 h. The analysis by x-ray diffraction (XRD) using the Rietveld refinement confirmed the formation of single-phase compound with a crystal structure (a = 5.5129 Å, b = 5.5183 Å and c = 25.0819 Å; α = β = γ = 90°). Scanning Electron Microscope (SEM) micrograph of the material shows globular morphologies (nearly spherical) of grains throughout the surface of the samples. The Curie temperature found for the undoped sample was about 400 °C, with additions of Bi3+, the temperature decreases and with additions of La3+ the Curie temperature increased significantly above 450 °C. In the measurements of the dielectric properties of SBN at room temperature, one observe that at 10 MHz the highest values of permittivity was observed for SBN5LaP (5%La2O3) with values of 116,71 and the lower loss (0.0057) was obtained for SBN15LaP (15%La2O3). In the microwave frequency region, Bi2O3 added samples have shown higher dielectric permittivity than La2O3 added samples, we highlight the SBN15BiG (15 % Bi2O3) with the highest dielectric permittivity of 70.32 (3.4 GHz). The dielectric permittivity values are in the range of 28–71 and dielectric losses are of the order of 10−2. The samples were investigated for possible applications in RF and microwave components.


Radio-frequency Ferroelectrics 



This work was partly sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and X-ray Laboratory, Federal University of Ceará Process: 402561/2007-4 (Edital MCT/CNPq no 10/2007) and the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-11-1-0095)


  1. 1.
    B. Aurivillius, Ark. Kemi (1950) 519Google Scholar
  2. 2.
    J.F. Scott, C.A.P. de Araujo, Science 246, 1400 (1989)CrossRefGoogle Scholar
  3. 3.
    B. Aurivillius, Ark. Kemi (1949) 463Google Scholar
  4. 4.
    J. Robertson, C.W. Chen, W.L. Warren, C.C. Gutleben, Appl. Phys. Lett. 69, 1704 (1996)CrossRefGoogle Scholar
  5. 5.
    C.A.P. de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627 (1995)CrossRefGoogle Scholar
  6. 6.
    Y. Wu, G.Z. Cao, Appl. Phys. Lett. 75, 2650 (1999)CrossRefGoogle Scholar
  7. 7.
    Y. Wu, G.Z. Cao, J. Mater. Sci. Lett. 19, 267 (2000)CrossRefGoogle Scholar
  8. 8.
    S. Ezhilvalavan, J.M. Xue, J. Wang, J. Phys D:Appl Phys 35, 2254 (2002)CrossRefGoogle Scholar
  9. 9.
    G.Z. Liu, H.S. Gu, C. Wang, J. Qiu, H.B. Lu, Chin. Phys. Lett. 24, 2387 (2007)CrossRefGoogle Scholar
  10. 10.
    G.Z. Liu, C. Wang, H.S. Gu, H.B. Lu, J. Phys D:Appl Phys 40, 7817 (2007)CrossRefGoogle Scholar
  11. 11.
    E.C. Subbarao, Phys. Rev. 122, 804 (1961)CrossRefGoogle Scholar
  12. 12.
    X-ray Laboratory, Federal University of Ceará, Available at:<>. Accessed on: April 7, 2012.
  13. 13.
    A.J. Moulson, J.M. Herbert, Electroceramics (Chapman and Hall, London, 1990)Google Scholar
  14. 14.
    C. Yeh, F.I. Shimabukuro, The Essence of Dielectric Waveguides (Springer Science + Business Media, New York, 2008)CrossRefGoogle Scholar
  15. 15.
    M.N. Afsar, K.J. Button, Millimeter-wave dielectric measurement of materials. Proc. IEEE 73, 131 (1985)CrossRefGoogle Scholar
  16. 16.
    B.W. Hakki, P.D. Coleman, Microw. Theory Tech. 3, 402–410 (1960)CrossRefGoogle Scholar
  17. 17.
    D. Dhak, P. Dhak, P. Pramanik, Appl Surf Sci 254, 3078 (2008)CrossRefGoogle Scholar
  18. 18.
    R.C. Buchanan, Ceramic Material for Electronics: Processing, Properties and Applications, 2nd edn. (Marcel Dekker INC., United States of American, 1991), p. 532Google Scholar
  19. 19.
    D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl Phys. Lett. 88, 212907 (2006)CrossRefGoogle Scholar
  20. 20.
    M.M. Kumar, K.L.J. Yadav, Phys.: Condens. Matter 18, L503 (2006)CrossRefGoogle Scholar
  21. 21.
    F. Gerrero, J.J. Portejes, H. Amorin, A. Fundora, J. Siqueiros, G. Hirata, J. Eur. Ceram. Soc. 18, 745 (1998)CrossRefGoogle Scholar
  22. 22.
    V. Shrivstava, A.K. Jha, R.G. Mendiratta, Dielectric studies of La and Pb doped SrBi2Nb2O9 ferroelectric ceramic. Mater Lett 60, 1459–1462 (2006)CrossRefGoogle Scholar
  23. 23.
    M.J.S. Rocha, M.C.C. Filho, K.R.B. Theophilo, J.C. Denardin, I.F. Vasconcelos, E.B. Araújo, A.S.B. Sombra, Ferrimagnetism and ferroelectricity of the composite matrix: SrBi2Nb2O9 (SBN)X-BaFe12019(BFO)100–X. Mater Sci Appl 3, 6–17 (2012). doi: 10.4236/msa.2012.31002 Google Scholar
  24. 24.
    C.C. Silva, A.S.B. Sombra, Temperature dependence of the magnetic and electric properties of Ca2Fe2O5. Mater Sci Appl 2(n.9), 1349–1353 (2011). doi: 10.4236/msa.2011.29183 Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • E. O. Sancho
    • 1
    • 3
  • P. M. O. Silva
    • 2
    • 3
  • G. F. M. Pires Júnior
    • 2
    • 3
  • H. O. Rodrigues
    • 2
    • 3
  • D. B. Freitas
    • 2
    • 3
  • A. S. B. Sombra
    • 2
    • 3
  1. 1.Metallurgical and Materials Engineering Department (DEMM)Federal University of Ceará – UFCFortalezaBrazil
  2. 2.Teleinformatics Engineering Department (DETI)Federal University of Ceará – UFCFortalezaBrazil
  3. 3.Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Physics DepartmentFederal University of Ceará - UFCFortalezaBrazil

Personalised recommendations